Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 19 2017 08:46:11
%S 1,1,1,2,17,167043,6618080569762280805809
%N a(n)=(a(n-1)^4*a(n-2)+1)/a(n-3) with a(0)=a(1)=a(2)=1.
%C This is the case a=1, b=4, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).
%H Seiichi Manyama, <a href="/A208208/b208208.txt">Table of n, a(n) for n = 0..8</a>
%H Sergey Fomin and Andrei Zelevinsky, <a href="http://arxiv.org/abs/math/0104241">The Laurent phenomenon</a>, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
%F From _Vaclav Kotesovec_, May 20 2015: (Start)
%F a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
%F d1 = -0.588363990685104156421284586508527584304318862407786509166141051262...
%F d2 = 0.4064206546327112651910488344937800073049991477253475806754539682375...
%F d3 = 4.1819433360523928912302357520147475769993197146824389284906870830246...
%F are the roots of the equation d^3 + 1 = 4*d^2 + d and
%F c1 = 0.8094826741348488413005600397911253102639462301397489110738060562305...
%F c2 = 0.5758908197062035276668941188013698534573120455706764136847247903030...
%F c3 = 1.0094396347013780675988108222508397688561313671701492219003321772184...
%F (End)
%p a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^4*a(n-2)+1)/a(n-3): end: seq(a(i),i=0..10);
%t RecurrenceTable[{a[n] == (a[n - 1]^4*a[n - 2] + 1)/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 7}] (* _Michael De Vlieger_, Mar 19 2017 *)
%Y Cf. A005246, A208207.
%K nonn
%O 0,4
%A _Matthew C. Russell_, Apr 23 2012