login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010153
Continued fraction for sqrt(75) (or 5*sqrt(3)).
4
8, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16
OFFSET
0,1
FORMULA
From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2) = 1, a(2^e) = 16 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 15/4^s). (End)
EXAMPLE
8.66025403784438646763723170... = 8 + 1/(1 + 1/(1 + 1/(1 + 1/(16 + ...)))). - Harry J. Smith, Jun 02 2009
MATHEMATICA
ContinuedFraction[Sqrt[75], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
PadRight[{8}, 120, {16, 1, 1, 1}] (* Harvey P. Dale, Oct 05 2024 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 18000); x=contfrac(sqrt(75)); for (n=0, 20000, write("b010153.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009
CROSSREFS
Cf. A010527.
Sequence in context: A276405 A066341 A181064 * A360970 A363918 A133421
KEYWORD
nonn,cofr,easy,mult
STATUS
approved