login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363918
a(n) = Product_{p in Factors(n)} mult(p)*n^(mult(p) - 1), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.
1
1, 1, 1, 8, 1, 1, 1, 192, 18, 1, 1, 24, 1, 1, 1, 16384, 1, 36, 1, 40, 1, 1, 1, 1728, 50, 1, 2187, 56, 1, 1, 1, 5242880, 1, 1, 1, 5184, 1, 1, 1, 4800, 1, 1, 1, 88, 90, 1, 1, 442368, 98, 100, 1, 104, 1, 8748, 1, 9408, 1, 1, 1, 120, 1, 1, 126, 6442450944, 1, 1, 1, 136
OFFSET
1,4
FORMULA
a(n) / A363919(n) = A005361(n).
a(n) * A205959(n) = A005361(n) * A363923(n) = A363917(n).
MAPLE
a := n -> local p: mul(p[2] * n^(p[2] - 1), p in ifactors(n)[2]):
seq(a(n), n = 1..68);
PROG
(PARI) a(n) = my(f=factor(n)[, 2]); vecprod(f)*n^(vecsum(f)-#f); \\ Michel Marcus, Jul 19 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 19 2023
STATUS
approved