login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A363917
a(n) = Product_{p in Factors(n)} mult(p) * n^mult(p) / p, where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.
2
1, 1, 1, 16, 1, 6, 1, 768, 54, 10, 1, 576, 1, 14, 15, 131072, 1, 1944, 1, 1600, 21, 22, 1, 165888, 250, 26, 19683, 3136, 1, 900, 1, 83886080, 33, 34, 35, 1119744, 1, 38, 39, 768000, 1, 1764, 1, 7744, 12150, 46, 1, 169869312, 686, 25000, 51, 10816, 1, 4251528
OFFSET
1,4
FORMULA
a(n) = A363918(n) * A205959(n).
a(n) = A363923(n) * A005361(n).
MAPLE
A363917 := n-> local p; mul(p[2] * n^p[2] / p[1], p in ifactors(n)[2]):
seq(A363917(n), n = 1..54);
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 19 2023
STATUS
approved