login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363923
a(n) = n^npf(n) / rad(n), where npf(n) is the number of prime factors with multiplicity of n.
5
1, 1, 1, 8, 1, 6, 1, 256, 27, 10, 1, 288, 1, 14, 15, 32768, 1, 972, 1, 800, 21, 22, 1, 55296, 125, 26, 6561, 1568, 1, 900, 1, 16777216, 33, 34, 35, 279936, 1, 38, 39, 256000, 1, 1764, 1, 3872, 6075, 46, 1, 42467328, 343, 12500, 51, 5408, 1, 1417176, 55, 702464
OFFSET
1,4
LINKS
FORMULA
a(n) = n^A001222(n) / A007947(n).
a(n) = 1 <=> n term of A008578.
MAPLE
with(NumberTheory): a := n -> n^NumberOfPrimeFactors(n) / Radical(n):
seq(a(n), n = 1..56);
MATHEMATICA
Array[#^PrimeOmega[#]/(Times @@ FactorInteger[#][[All, 1]]) &, 56] (* Michael De Vlieger, Jul 11 2023 *)
PROG
(PARI) a(n) = my(f=factor(n)); n^bigomega(f)/factorback(f[, 1]); \\ Michel Marcus, Jul 11 2023
(Python)
from math import prod
from sympy import factorint
def A363923(n): return prod(n**e//p for p, e in factorint(n).items()) # Chai Wah Wu, Jul 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 11 2023
STATUS
approved