login
A363919
a(n) = n^excess(n), where excess(n) = A046660(n).
3
1, 1, 1, 4, 1, 1, 1, 64, 9, 1, 1, 12, 1, 1, 1, 4096, 1, 18, 1, 20, 1, 1, 1, 576, 25, 1, 729, 28, 1, 1, 1, 1048576, 1, 1, 1, 1296, 1, 1, 1, 1600, 1, 1, 1, 44, 45, 1, 1, 110592, 49, 50, 1, 52, 1, 2916, 1, 3136, 1, 1, 1, 60, 1, 1, 63, 1073741824, 1, 1, 1, 68
OFFSET
1,4
LINKS
Michael De Vlieger, Plot p(k)^e(k) at (x,y) = (n,k) for n = 1..2^11, with a color function representing e(k) where black represents e(k) = 1, red e(k) = 2, through magenta. The bar at bottom represents a(n) = 1 in black, a(n) a composite prime power in gold, a(n) neither squarefree nor semiprime in blue, and a(n) such that all e(k) > 1 in purple.
FORMULA
a(n) = n^(Sum_{p in Factors(n)} (mult(p) - 1)), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.
a(n) = A363923(n) / A205959(n).
a(n) = n^A046660(n) = n^(A001222(n) - A001221(n)).
a(n) = 1 or divisible by at least one squared prime.
a(n) = 1 <=> n is squarefree (A005117).
a(n) != 1 <=> A056170(n) != 0.
a(n) = n <=> n = A060687(n - 1) for n >= 2.
a(2^n) = 2^(n*(n - 1)) = A053763(n).
a(n) <= 2^(lb(n)*(lb(n)-1)), where lb(n) = floor(log_{2}(n)).
a(n) is even <=> n = 2*A337945(n).
a(n) > 1 is odd <=> n = A053850(n).
n is prime => a(n) = 1. ('prime' means term of A000040).
n is prime product => a(n) = 1. ('prime product' means term of A144338).
n is proper prime power => a(n) is proper prime power. ('proper prime power' means term of A246547).
Moebius(a(n)) = [a(n) = 1], where [ ] denotes the Iverson bracket.
EXAMPLE
108 = 2^2 * 3^3 => excess(108) = 5 - 2 => a(108) = 108^3 = 1259712.
MAPLE
with(NumberTheory):
A363919 := n -> n^(NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct')):
# Alternative:
a := n -> local i: n^add(i[2] - 1, i in ifactors(n)[2]): seq(a(n), n = 1..68);
MATHEMATICA
Array[#^(PrimeOmega[#] - PrimeNu[#]) &, 120]
PROG
(SageMath)
def A363919(n):
if n < 2: return 1
return n^sum(p[1] - 1 for p in list(factor(n)))
print([A363919(n) for n in srange(1, 69)])
(Julia)
using Nemo
exc(n::fmpz) = sum(e - 1 for (p, e) in factor(n))
A363919(n::fmpz) = n < 2 ? fmpz(1) : n^exc(n)
println([A363919(fmpz(n)) for n in 1:68])
(PARI)
a(n) = my(f=factor(n)[, 2]); n^(vecsum(f)-#f); \\ Michel Marcus, Jul 16 2023
(Python)
from sympy import factorint
def A363919(n): return n**sum(map(lambda e:e-1, factorint(n).values())) # Chai Wah Wu, Jul 18 2023
KEYWORD
nonn
AUTHOR
STATUS
approved