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ABSTRACT.

We examine related sequences that raise n to a power and divid-
ing by squarefree kernel, where the power is the either number of
distinct primes p dividing 1, or those p | n with multiplicity. These
sequences exhibit behavior that excludes numbers that belong to
certain easily defined subsets of the natural numbers.

SEQUENCE A363923.

Let w(n) = A1221(n) be the number of distinct prime factors of n,
(n) = A1222(n) the number of prime factors of n with multiplicity,
and RAD(11) = A7947(n) the squarefree kernel of , the product of the
distinct prime factors of n.

Consider Peter Luschny’s sequence A363923 defined by the fol-
lowing equation:

a(n) = A363923(n) = n®"/RAD(n). [1.1]

The first terms of this sequence are listed below:
1, 1, 1, 8, 1, 6, 1, 256, 27, 10, 1, 288, 1, 14, 15,
32768, 1, 972, 1, 800, 21, 22, 1, 55296, 125, 26, 6561,
1568, 1, 900, 1, 16777216, 33, 34, 35, 279936, 1, 38,
39, 256000, 1, 1764, 1, 3872, 6075, 46, 1, 42467328,
343, 12500, 51, 5408, 1, 1417176, 55, 702464, ...
Peter Luschny pointed out in the comment section of A363923
that n = 1 or prime n implies a(n) = 1.
Examining the prime decomposition of these numbers with aid of
Table A in the appendix and Figure 1 leads us to note the following:

a(p)=p'/p=1.

a(p) = p*/p=p>.

a(pq) = (pa)*/(pq) = pq, primes p < q.

a(v) = v*®/p = Oy e A120944.

a(t) = t°® /rRaD(t) where @(n) > 3 and t € A126706.
Hence we may say generally:

For prime powers: a(p®) = p-V
and for squarefree n: a(n) = n®®-1),
a(n) is never prime.
For numbers n neither squarefree nor prime powers, on account of
a(n) = 3, a(n) € A246708.
‘We venture three related theorems.
TueoREM Al. There are no primes in A363923.

THEOREM A2. The only squarefree numbers k > 1 in A363923 are
squarefree semiprimes.

THEOREM A3. n € A024619 with o(n) > 2 implies a(n) € A286708.

To prove each theorem, we approach in cases based on number
of distinct prime factors and multiplicities of prime power factors.
Hence we divide natural numbers N into {1}, the primes a40, com-
posite prime powers A246547, squarefree composites A120994, and
numbers neither squarefree nor prime powers, A126706.

Define function M(n) to be the maximum exponent among prime
power factors p | n. Consider the following table. It is evident that
aside from the empty product, the categories are mutually exclusive

and break the natural numbers { N \ {1}} into 4 infinite subsets
shown in the following table:

M(n)=1 M(n) > 1
w(n)>1 A246547 A126706
wn) =1 A40 A120944

Therefore we have the following:

Prime powers A246655 = A40 U A246547.

Numbers not prime powers A024619 = A120944 U A126706.
Squarefree numbers A§117 = A40 U A120944.

Numbers not squarefree A013929 = A246547 U A126706.

LemMa 1.1. a(1) = 1°/1 = 1. (Case of empty product) m
LemMMaA 1.2. Prime p implies a(p) = 1.
PrOOF. a(p) =p"'/p = 1. (Prime case) m

LemMma 1.3. a(p*) is composite for € > 1.
PROOF. a(p?) = p*/p = p®-V. (Prime power case) B

LeEMMA 1.4. Squarefree semiprimes are fixed points.
Prook: a(pq) = (pq)*/(pq) = pq, primes p < q. (Squarefree semi-
prime case) B
LEMMA 1.5. Squarefree n with w(n) > 2 implies a(n) composite, with
power factors p* where & > 1. (n € A3503 52 implies a(n) € A286708).
PrOOEF:

Observe A350352 = A120944 \ A6881.

Squarefree n with w(n) > 2 implies o(n) > 2, since for squarefree
numbers, w(n) = Q(n).

Squarefree n implies RAD(n) = .

Therefore a(n) = n®/n = n@®-Y and since o(n) > 2, all power
factors of a(n) have multiplicity exceeding 1. (Balance of squarefree
cases) |

LEMMA 1.6. Numbers n neither squarefree nor prime powers have
a(n)composite, with power factors p* where ¢ > 1. (n € A126708 im-
plies a(n) € A286708)

PRrROOF:

n € A126708 implies both o(n) > w(n) and n > RAD(n), the latter
since n = m X RAD(n), where m > 1.

n € A126708 implies a(n) > 3.

Then a(n) = n%® /RaD(n) = m x n®™D and it is clear that since we
have a(n) > mn?, a(n) is composite with prime power factors whose
exponents exceed 1. (Balance of all cases) m

Since Lemmas 1.1 through 1.6 cover all natural numbers, we show
theorems A1, A2, and A3 to be true.

Conclusions regarding a = A363923:
« 1>1andp > 1; generally p* > p©0.
« pq > pq; fixed points are {1, pq}.

« For n € A350352, n > a(n) that is composite, with power fac-
tors p* | a(n) where ¢ > 1. Therefore a(n) € A303606, and since
A303606 C A286708, a(n) € A286708.

« Forn € A126706,n=m x RAD(n) > m* x RaD (1) ¥V, k > 1.

o a(n) € A1694 for n ¢ A6881.



SEQUENCE A205959.
‘We move on to another, earlier sequence of Luschny related to g,
defined below:

s(n) = A205959(n) = n“™/RAD(n).

[2.1]

The first terms of this sequence are listed below:

i, 1,1, 2,1, 6, 1, 4, 3, 10, 1, 24, 1, 14, 15, 8, 1,
54, 1, 40, 21, 22, 1, 96, 5, 26, 9, 56, 1, 900, 1, 16,
33, 34, 35, 216, 1, 38, 39, 160, 1, 1764, 1, 88, 135,
46, 1, 384, 7, 250, 51, 104, 1, 486, 55, 224, 57, ...

Looking at Figure 2 in appendix, we note the following:
« s(1) =s(p) =1.

« s(p) =p“ " s(p) =p.

+ s(pg) =pa.

Now we attempt to write theorems similar to those in the last sec-
tion pertaining to A363923, but this time for A205959. We begin by-
dividing { N\ {1}} into the same infinite subsets as we had regarding
A363923.

LEMMA 2.1: Prime p implies s(p) = 1.
PROOE: Suppose the proposition is true. We have the following:

s(p) =p*?/ran(p)
= l/p

=1.

This confirms the proposition. B (Prime case.)

LEMMA 2.2: Prime power p implies s(p*) = p©V.
PROOEF: Suppose the proposition is true. We have the following:

s(p?) = (p*)*@/raD(p*)
— (ps)l/p
= ple),
confirming the proposition. B (Prime power case.)

REMARK 2.3: We observe the special case that generates prime p:
s(p*) =p.
LEMMA 2.4: Squarefree semiprimes pq, primes p < g, represent fixed
pointsins.
PROOF: s(pq) = (pq)“®?/raD(pq)
= (pa)*/(pq)

= pq. B (Squarefree semiprime case.)

LEMMA 2.5: For n € A350352, s(n) = n(“®,
ProOF: Observe that A350352 = A120944 \ A6881.
Numbers n € A350352 are squarefree with w(n) > 3.
Squarefree n implies n = RAD(n). Therefore:
s(n) = n“™/RAD(n)
=n*/nwhere k=w(n) and k > 2
=n®V, m (Balance of squarefree case.)

We remark that s(n) > n”.

LEMMA 2.6: Forn € A126706, s(n) > n.
PrOOF: For n € A126706, both w(n) = k > 1 and n > RAD(n). More
precisely, n = m X RAD(n) with m > 1.
s(n) = n“™/RAD(n)

= (m x RAD(n) )*/RAD(11)

= mFx RAD(n)*/RAD (1)

= m*x RaD(n)*V

=mx n®,
It is clear that m x n**V > »n. m (Final case.)

2

Example: 12 =2 xraD(12) =2 x 6, hence
s(12) = 122/6
=2*x6
=24.

Conclusions regarding s = A205959:
e 11 andp >1.
¢ P2 >p and generallypf _>p(e—1).

* P9~ pq.
o 1> 1% for n € A350352. Thus s(n) € {4303606 \ A085986},
and since A303606 C A286708, s(n) € A286708.

e n>mxn®Y m>1,k>1,forneAa126706.

SEQUENCE A363919.
Now finally we turn to a question of Peter Luschny. Consider the
following ratio:

t(n) = A363919(n)
= A363923(n)/A205959(n)
= (n*®/raD(n)) / (n“®/RAD(n))
= 20 / o)
= p(@m) -w@m),

The first terms of this sequence are listed below:

1, 1, 1, 4,1, 1, 1, 64, 9, 1, 1, 12, 1, 1, 1, 4096,
1, 18, 1, 20, 1, 1, 1, 576, 25, 1, 729, 28, 1, 1, 1,
1048576, 1, 1, 1, 1296, 1, 1, 1, 1600, 1, 1, 1, 44, 45,
1, 1, 110592, 49, 50, 1, 52, 1, 2916, 1, 3136, 1, ...

These terms are plotted in Figure 3 in the appendix.

A question of Luschny regarded identification of indices r such
that #(R) sets a record. Our approach involves identifying a class of
number N such that £(N)/N > t(n)/n for n in any other class. We em-
ploy the infinite subsets we considered in the previous sections, but
we conflate the squarefree cases as they are simplified in A363919.

LEMMA 3.1: Squarefree n € A5117 implies t(n) = 1.
PROOF: Squarefree n € A5117 implies w(n) = o(n), leaving us with
the following which confirms the proposition:
t(n) = nle -em)

= nO

=1l.m
CororLary 3.2: H(1) = t(p) = 1.
LemMa 3.3: Prime power n = p* implies t(p*) = p*»73¢-1,
PROOE: t(p®) = (p*)©@®) -«

— (ps)(s—l)
= plexe1)

:pA2378(£_1)' .

We observe that (e x (e-1)) > ¢ for e > 1, hence t(p*) > a(p®).
COROLLARY 3.4: t(p®) = p”.
LEMMA 3.5: A number 1 € A126706 that are neither squarefree nor
prime power implies t(n) > n.
ProOF: The number n € A126706 implies o(n) > w(n) > 1. Letk =
Q(n) - w(n). Itis clear that (n) > k > 1. Rewriting the following:

t(n) = plem -wm)

since k > 1, it is clear that n*> n. m



COROLLARY 3.6: We have fixed points for n € A126706 such that, for
some prime p | 1, n = p RAD(n), since (1) — w(n) = 1. These are nin
A072357. Therefore, 12, 18, 20, etc. represent fixed points in t.

Conclusions involving t = A363919(1):
e n>1forneasiiy.

. p2 > p2 and generally p* > p“’”g(“‘) .

* P9~ pq.

o n>nk, () >k>1forn€ a126706.

o« n>nforn € A072357.

NUMBERS THAT SET RECORDS IN A363919.
The sequence R of recordsetters begins as follows:

1, 4, 8, 16, 32, 64, 128, 512, 1024, 2048, 4096,

The number 1 sets a record since 1 is squarefree and 1 » 1.

The number 4 sets the next record because 2 and 3 are also square-
free and yield 1, but 4 > 4, as 4 = 22, the square of the smallest prime.

8 follows 4 in the sequence of records because 5, 6, and 7 are
squarefree, and 8 > 2?3 = 64.

THEOREM 4. Numbers R € A151821 imply #(R) is a local maximum.
PRrOOE: The firstrecord R, = 1 pertains to the case of n - 1 for square-
free n € As117 by Lemma 3.1. Thereafter, we are concerned with
prime powers (Lemma 3.3) and numbers neither squarefree nor
prime power (Lemma 3.5). Attempting to minimize the magnitude
of these species, we are concerned with 26V and (2° x 3).

As to Lemma 3.3, since it is clear that p* > 2V fore > 1 and p > 2,
we need not consider powers other than those of 2.

Regarding Lemma 3.5, we want multiplicity to apply to the small-
est prime factor of n € A126706, and that we want to ensure the
smallest possible product n € A126706 by the fewest number of dis-
tinct primes, where the primes are the very smallest such. Hence we
are talking about (2 x 3).

Observe that 2D < (2¢ x 3) < 22, The power 2¢V conforms to
Lemma 4.3, hence the following transformation:

2(£+1) > ZS(EH).

The number (2¢ x 3) conforms to Lemma 3.5, and we have the
following transformation:

(27 3) » 251 x 31 via the following:

t(n) = plem -wm)
— (25 X 3)(£+1—2)
= e(e-1) ¢ 3(571)

For ¢ > 1 the following is true:

25(5+1) > 25(5—1) % 3(5—1)
2(Ez+s) > 2(52—5) X 3(5—1)
2% > 36D,
Therefore, given these facts and Lemmas 3.1-3.5, we show that re-
cord setters in ¢ are tantamount to A151821. This is to say the fol-
lowing:
tR) > A151821(i). B

Example: suppose ¢ = 3:

2(er1) 5 2(ex (1) hecomes 16 » 4096 while
(2¢x 3) » (25 x 3¢ becomes 24 > 64 x 9 = 576.

The first few transformations appear in the table below:

€ t (2% (e+1)) t(2%e x 3)

0 1=2"0

1 4 = 272 1

2 64 = 276 12 = 272 x 3

3 4096 = 2712 576 = 276 x 372
4 1048576 = 2720 110592 = 2712 x 373
5 1073741824 = 2730 84934656 = 2720 x 374
6 4398046511104 = 2742 260919263232 = 2730 x 375

Hence we have demonstrated that the maxima of the sequence #(n)
are RE A151821.

CONCLUSION.

Elementary number-theoretical functions w(n), o(n), and RAD(n)
are sensitive to prime decomposition of n. Sequences A205959,
2363923, and A363919 explore the relationship of these functions.
Therefore they are amenable to the partitioning of natural numbers
into species predicated on two axes, that is, whether or not prime
power, and whether or not squarefree. Hence we divide the natural
numbers 7 > 1 into infinite subsets of the primes (a40), composite
prime powers (A246547), squarefree composites (A120944), and
numbers neither squarefree nor prime powers (a126706). With
these species, we may approach theorems by case.

We summarize findings below:

Conclusions regarding a = A363923:
« 1> landp > I; generally p* > p©V.
« pq > pq; fixed points are {1, pq}.

« For n € A350352, n > a(n) that is composite, with power fac-
tors p* | a(n) where ¢ > 1. Therefore a(n) € A303606, and since
A303606 C A286708, a(n) € A286708.

« Forn € A126706,n = m x RAD(n) > m* x RAD(n) ¥V, k > 1.

o a(n) € A1694 forn ¢ A6881.

Conclusions regarding s = A205959:
e l>landp~1.

« p*> p and generally p* > p©V.

* P9~ pq.

o 1> n%"Y for n € A350352. Thus s(n) € {4303606 \ A085986},
and since A303606 C A286708, s(n) € A286708.

e n>mxn®Y m>1k>1,forneAa126706.

Conclusions involving t = A363919(n):

e n>1forneasiiy.

« p*> p”and generally p* > p2378¢-1),

* P9~ pq.

o n>nk, o) >k>1forne€ a126706.

o« n>nforn€ A072357.

Recordsin A363919 arein A151821. :ﬁ:



APPENDIX:

TABLE A.
n a(n)
1 1
2 1
3 1
4 8
5 1
6 6
7 1
8 256
9 27
10 10
11 1
12 288
13 1
14 14
15 15
16 32768
17 1
18 972
19 1
20 800
21 21
22 22
23 1
24 55296
25 125
26 26
27 6561
28 1568
29 1
30 900
31 1
32 16777216
33 33
34 34
35 35
36 279936
37 1
38 38
39 39
40 256000
41 1
42 1764
43 1
44 3872
45 6075
46 46
47 1
48 42467328
49 343
50 12500
51 51
52 5408
53 1
54 1417176
55 55
56 702464
57 57
58 58
59 1
60 432000
CODE:

[c1] Generate a(n).
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Array[#*PrimeOmega[#]/ (Times @@
FactorInteger[#][[All, 1]]) &, 2710]

[c2] Generate s(n).

Array[#*PrimeNu[#]/ (Times Q@
FactorInteger[#] [[All, 1]]) &, 2710]

[c3] Generate t(n).
Array[#* (PrimeOmega[#]

- PrimeNu[#]) &, 2710]

Aoeeel2 Empty Product

Adeee4e Prime

A246547 Composite Prime Power

AB@6881 Squarefree Semiprime

ABB2110 Primorial

A35@352 Squarfree with w(n) = 3
A286708 Powerful but not Prime Power
A332785 Nonsquarefree but not Powerful
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T{gure 1: T[atﬁ; | A363923(n) at (x,_y) =(n, E)for n < 360, 2x vertica[exaggemtion.

We use a color fun(tion in all these ﬁgures to represent ¢, where black represents £ = 1, red
£=2, ..., incfigofor the maximum mu[ti})[lcit_y &. The bar afca[or at the bottom oftﬁe}a[at
represents the class to which n Ee[ongs; the colors in this bar are accurc[ing to the Eey above.
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Figure 2: Plot p | 4205959(n) at (x,y) = (n, k) for n < 360, 2x vertical exaggeration.
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Figure 3: Plot pt | 4363919(n) at (x,y) = (n, k) for n < 360, 2x vertical exaggeration.
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CONCERNS SEQUENCES:
A000040: Prime numbers.
Ao0o01221: Number of distinct prime divisors of , w(n).
Ao001222: Number of prime divisors of n with multiplicity, o(n).
A001694: Powerful numbers, {a*b®: a>1,b> 1}.
A005117: Squarefree numbers.
A006881: Squarefree semiprimes.
A007947: Squarefree kernel of n; RAD(n).
A013929: Numbers that are not squarefree.
A024619: Numbers that are not prime powers.
A120944: Squarefree composites.
A126706: Numbers neither prime power nor squarefree.
A151821: {1} U {2:¢> 1},
A205959: s(n) = n“®/RAD(n).
A246547: Composite prime powers p°: £ > 1.
A286708: Products of A246547.
A332785: A126706 \ A286708.
A350352: A120944 \ A006881.
A363919: t(n) = (@M -em),
A363923: a(n) = n®™/RAD(n).
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