login
A060687
Numbers k such that there exist exactly 2 Abelian groups of order k, i.e., A000688(k) = 2.
50
4, 9, 12, 18, 20, 25, 28, 44, 45, 49, 50, 52, 60, 63, 68, 75, 76, 84, 90, 92, 98, 99, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 188, 198, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268, 275, 276, 279
OFFSET
1,1
COMMENTS
k belongs to this sequence iff exactly one prime in its factorization into prime powers has exponent 2 and all the other primes in the factorization have exponent 1, for example 60 = 2^2 * 3 * 5.
Numbers k such that A046660(k) = 1. - Zak Seidov, Nov 14 2012
Numbers that have twice as many unitary divisors as nonunitary divisors, the largest possible ratio for nonsquarefree numbers (i.e., numbers that have nonunitary divisors). - Amiram Eldar, Nov 01 2024
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Enrique Pérez Herrero)
Eckford Cohen, Arithmetical notes. VIII. An asymptotic formula of Rényi, Proc. Amer. Math. Soc. 13 (1962), pp. 536-539.
FORMULA
k such that A001222(k)-A001221(k) = 1.
Cohen proved that a(n) = kn + O(sqrt(n) log log n), where k = A013661/A179119 = 1/A271971 = 4.981178... - Charles R Greathouse IV, Aug 02 2016
MATHEMATICA
Select[Range[500], PrimeOmega[#] - PrimeNu[#] == 1 &] (* Harvey P. Dale, Sep 08 2011 *)
PROG
(PARI) for(n=1, 279, if(bigomega(n)-omega(n)==1, print1(n, ", ")))
(PARI) is(n)=factorback(factor(n)[, 2])==2 \\ Charles R Greathouse IV, Sep 18 2015
(PARI) list(lim)=my(s=lim\4, v=List(), u=vectorsmall(s, i, 1), t, x); forprime(k=2, sqrtint(s), t=k^2; forstep(i=t, s, t, u[i]=0)); forprime(k=2, sqrtint(lim\1), t=k^2; for(i=1, #u, if(u[i] && gcd(k, i)==1, x=t*i; if(x>lim, break); listput(v, x)))); Set(v) \\ Charles R Greathouse IV, Aug 02 2016
(Haskell)
a060687 n = a060687_list !! (n-1)
a060687_list = filter ((== 1) . a046660) [1..]
-- Reinhard Zumkeller, Nov 29 2015
KEYWORD
nonn,easy
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Jul 05 2001
STATUS
approved