The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066341 Sum of distinct terms in n-th row of Fermat's triangle. 1
 1, 1, 1, 1, 8, 1, 1, 1, 12, 1, 14, 1, 16, 17, 1, 1, 20, 1, 22, 23, 24, 1, 26, 1, 28, 1, 30, 1, 94, 1, 1, 35, 36, 37, 38, 1, 40, 41, 42, 1, 130, 1, 46, 47, 48, 1, 50, 1, 52, 53, 54, 1, 56, 57, 58, 59, 60, 1, 184, 1, 64, 65, 1, 67, 202, 1, 70, 71, 214, 1, 74, 1, 76, 77, 78, 79, 238, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,5 LINKS Antti Karttunen, Table of n, a(n) for n = 2..13737 (terms 2..2000 from Muniru A Asiru) EXAMPLE Fermat's triangle (A066340) is {1}, {1, 1}, {1, 0, 1}, {1, 1, 1, 1}, {1, 4, 3, 4, 1}, ... and the distinct terms in each row are {1}, {1}, {0, 1}, {1}, {1, 3, 4}, ... with sums 1, 1, 1, 1, 8, ... MATHEMATICA Plus@@@(Union/@Table[ (PowerMod[ #, EulerPhi[ k ], k ])&/@ Range[ k-1 ], {k, 2, 256} ]) or equivalently Table[ w=Length[ FactorInteger[ k ]]; (2^(w-1)-1)*k+2^(w-1), {k, 2, 256} ] PROG (PARI) A066341(n) = { my(ph = eulerphi(n), m=Map(), t, s=0); for(k=1, n-1, t = ((k^ph)%n); if(!mapisdefined(m, t), s += t; mapput(m, t, t))); (s); }; \\ Antti Karttunen, Aug 06 2018 (GAP) List(List(List([2..80], n->List([1..n-1], m->PowerMod(m, Phi(n), n))), Set), Sum); # Muniru A Asiru, Aug 06 2018 CROSSREFS Cf. A066340. Sequence in context: A316786 A011264 A276405 * A181064 A010153 A360970 Adjacent sequences: A066338 A066339 A066340 * A066342 A066343 A066344 KEYWORD easy,nonn AUTHOR Wouter Meeussen, Jan 01 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 02:40 EDT 2024. Contains 372758 sequences. (Running on oeis4.)