The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066341 Sum of distinct terms in n-th row of Fermat's triangle. 1
1, 1, 1, 1, 8, 1, 1, 1, 12, 1, 14, 1, 16, 17, 1, 1, 20, 1, 22, 23, 24, 1, 26, 1, 28, 1, 30, 1, 94, 1, 1, 35, 36, 37, 38, 1, 40, 41, 42, 1, 130, 1, 46, 47, 48, 1, 50, 1, 52, 53, 54, 1, 56, 57, 58, 59, 60, 1, 184, 1, 64, 65, 1, 67, 202, 1, 70, 71, 214, 1, 74, 1, 76, 77, 78, 79, 238, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,5
LINKS
Antti Karttunen, Table of n, a(n) for n = 2..13737 (terms 2..2000 from Muniru A Asiru)
EXAMPLE
Fermat's triangle (A066340) is {1}, {1, 1}, {1, 0, 1}, {1, 1, 1, 1}, {1, 4, 3, 4, 1}, ... and the distinct terms in each row are {1}, {1}, {0, 1}, {1}, {1, 3, 4}, ... with sums 1, 1, 1, 1, 8, ...
MATHEMATICA
Plus@@@(Union/@Table[ (PowerMod[ #, EulerPhi[ k ], k ])&/@ Range[ k-1 ], {k, 2, 256} ]) or equivalently Table[ w=Length[ FactorInteger[ k ]]; (2^(w-1)-1)*k+2^(w-1), {k, 2, 256} ]
PROG
(PARI) A066341(n) = { my(ph = eulerphi(n), m=Map(), t, s=0); for(k=1, n-1, t = ((k^ph)%n); if(!mapisdefined(m, t), s += t; mapput(m, t, t))); (s); }; \\ Antti Karttunen, Aug 06 2018
(GAP) List(List(List([2..80], n->List([1..n-1], m->PowerMod(m, Phi(n), n))), Set), Sum); # Muniru A Asiru, Aug 06 2018
CROSSREFS
Cf. A066340.
Sequence in context: A316786 A011264 A276405 * A181064 A010153 A360970
KEYWORD
easy,nonn
AUTHOR
Wouter Meeussen, Jan 01 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 02:40 EDT 2024. Contains 372758 sequences. (Running on oeis4.)