login
A066340
Fermat's triangle: T(n,m) = m^phi(n) mod n; n >= 2; 1 <= m <= n-1, where phi is Euler's totient function.
4
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 6, 1, 6, 5, 6, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 8, 1, 8, 7, 8, 1, 8, 1, 8, 1, 1, 1, 6, 1, 10, 6, 1, 1, 6, 10, 1, 6, 1, 1
OFFSET
2,12
COMMENTS
Fermat's little theorem states that T(n,m)=1 for all m relatively prime to n.
LINKS
EXAMPLE
Triangle begins:
1;
1, 1;
1, 0, 1;
1, 1, 1, 1;
1, 4, 3, 4, 1;
1, 1, 1, 1, 1, 1;
1, 0, 1, 0, 1, 0, 1;
1, 1, 0, 1, 1, 0, 1, 1;
1, 6, 1, 6, 5, 6, 1, 6, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 8, 1, 8, 1, 8, 7, 8, 1, 8, 1, 8, 1;
1, 1, 6, 1, 10, 6, 1, 1, 6, 10, 1, 6, 1, 1;
MATHEMATICA
Table[PowerMod[ #, EulerPhi[n], n]&/@ Range[n-1], {n, 2, 32} ]
PROG
(PARI) T(n, k) = lift(Mod(k, n)^eulerphi(n));
tabl(nn) = for (n=2, nn, for (k=1, n-1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 13 2019
CROSSREFS
Cf. A000010.
Sequence in context: A048156 A070431 A070511 * A195597 A143505 A245727
KEYWORD
easy,nonn,tabl
AUTHOR
Wouter Meeussen, Jan 01 2002
STATUS
approved