login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245727
Least number k >= 0 such that n concatenated with n + k is prime.
1
0, 1, 4, 3, 4, 1, 2, 1, 2, 3, 6, 1, 6, 9, 8, 3, 4, 5, 12, 7, 8, 15, 10, 13, 6, 7, 2, 5, 10, 7, 6, 19, 10, 15, 4, 1, 2, 9, 4, 9, 12, 1, 6, 3, 2, 3, 4, 13, 2, 1, 2, 9, 28, 17, 2, 1, 22, 3, 22, 7, 2, 1, 4, 5, 4, 7, 12, 1, 2, 9, 6, 11, 20, 3, 2, 5, 12, 1, 14, 1, 10, 5, 4, 37, 12, 3, 16, 5, 10
OFFSET
1,3
LINKS
FORMULA
a(n) = A228325(n) - n for n > 1.
EXAMPLE
33 is not prime. 34 is not prime. 35 is not prime. 36 is not prime. 37 is prime. Since 7 is 4 more than 3, a(3) = 4.
MAPLE
a:= proc(n) local j; for j from n do if isprime(n*10^(1+ilog10(j))+j) then return(j-n) fi od end proc:
seq(a(n), n=1..100); # Robert Israel, Jul 30 2014
MATHEMATICA
lnk[n_]:=Module[{k=0, idn=IntegerDigits[n]}, While[!PrimeQ[FromDigits[ Join[ idn, IntegerDigits[ n+k]]]], k++]; k]; Array[lnk, 90] (* Harvey P. Dale, Oct 05 2014 *)
PROG
(PARI)
a(n) = for(k=n, 10^4, if(isprime(eval(concat(Str(n), Str(k)))), return(k-n)))
vector(150, n, a(n))
(Python)
def a(n):
..for k in range(n, 10**4):
....if isprime(str(n)+str(k)):
......return k-n
n = 1
while n < 150:
..print(a(n), end=', ')
..n += 1
CROSSREFS
Cf. A228325.
Sequence in context: A066340 A195597 A143505 * A280822 A346785 A284517
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jul 30 2014
STATUS
approved