|
|
A245725
|
|
Decimal expansion of z_tri, a constant related to the enumeration of spanning trees on the triangular lattice (this is different from A242968).
|
|
6
|
|
|
1, 6, 1, 5, 3, 2, 9, 7, 3, 6, 0, 9, 7, 2, 5, 2, 5, 7, 0, 4, 6, 8, 1, 8, 2, 5, 5, 3, 6, 1, 9, 0, 3, 1, 9, 7, 0, 3, 6, 1, 2, 0, 9, 2, 0, 3, 9, 0, 2, 9, 3, 5, 0, 8, 0, 6, 5, 4, 3, 4, 2, 3, 5, 1, 8, 0, 5, 0, 7, 5, 5, 6, 4, 0, 3, 6, 3, 4, 9, 2, 1, 0, 4, 1, 8, 9, 3, 8, 0, 4, 5, 4, 4, 6, 8, 5, 6, 9, 6, 0, 3, 6, 7, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.22 Lenz-Ising Constants, p. 400.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Robert Shrock and F. Y. Wu, Spanning Trees on Graphs and Lattices in d Dimensions p. 7.
|
|
FORMULA
|
log(2) + log(3) + H, where H is the auxiliary constant A242967.
|
|
EXAMPLE
|
1.6153297360972525704681825536190319703612092039029350806543423518...
|
|
MATHEMATICA
|
H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[Log[2] + Log[3] + H, 10, 104] // First
(* or *) 3*(Sqrt[3]/Pi)*N[Sum[1/n^2 - 1/(n+4)^2, {n, 1, Infinity, 6}], 104] // RealDigits // First
|
|
CROSSREFS
|
Cf. A242967, A242968, A242969.
Sequence in context: A010137 A245967 A212006 * A011096 A347177 A195695
Adjacent sequences: A245722 A245723 A245724 * A245726 A245727 A245728
|
|
KEYWORD
|
nonn,cons,easy
|
|
AUTHOR
|
Jean-François Alcover, Jul 30 2014
|
|
STATUS
|
approved
|
|
|
|