login
A228325
a(n) is the smallest number m>n such that the concatenation nm is prime.
5
3, 3, 7, 7, 9, 7, 9, 9, 11, 13, 17, 13, 19, 23, 23, 19, 21, 23, 31, 27, 29, 37, 33, 37, 31, 33, 29, 33, 39, 37, 37, 51, 43, 49, 39, 37, 39, 47, 43, 49, 53, 43, 49, 47, 47, 49, 51, 61, 51, 51, 53, 61, 81, 71, 57, 57, 79, 61, 81, 67, 63, 63, 67, 69, 69, 73, 79
OFFSET
1,1
COMMENTS
Max Alekseyev (see link in A068695) shows that a(n) always exists. - N. J. A. Sloane, Nov 13 2020
Suggested by the existence question in A228323.
EXAMPLE
12 is not prime but 13 is, so a(1)=3.
23 is prime so a(2)=3.
34, 35, 36 are not prime but 37 is, so a(3)=7.
MATHEMATICA
smc[n_]:=Module[{m=n+1}, If[OddQ[n], m++]; While[!PrimeQ[n*10^IntegerLength[ m]+ m], m=m+2]; m]; Array[smc, 70] (* Harvey P. Dale, Apr 30 2016 *)
PROG
(Python)
from sympy import isprime
from itertools import count
def a(n): return next(k for k in count(n+1) if isprime(int(str(n)+str(k))))
print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Oct 18 2022
CROSSREFS
Sequence in context: A092474 A225851 A107470 * A327122 A071042 A128053
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 20 2013
STATUS
approved