OFFSET
1,1
REFERENCES
D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
LINKS
R. Balakrishnan, S. F. Raj, The Wiener number of powers of the Mycielskian, Discussiones Math. Graph Theory, 30, 2010, 489-498 (see Theorem 2.1).
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Index entries for linear recurrences with constant coefficients, signature (12,-56,128,-144,64).
FORMULA
a(n) = 6*2^(2*n) - 2^(n-2)*(4 + 12*n + n^2 + n^3).
G.f.: x*(15 - 124*x + 400*x^2 - 560*x^3 + 320*x^4)/((1 - 4*x)*(1 - 2*x)^4).
EXAMPLE
a(1)=15 because Q(1) is the 1-edge path whose Mycielskian is the cycle graph C(5) with Wiener index 5*1+5*2 = 15.
MAPLE
a := proc (n) options operator, arrow: 6*2^(2*n)-2^(n-2)*(4+12*n+n^2+n^3) end proc: seq(a(n), n = 1 .. 25);
MATHEMATICA
LinearRecurrence[{12, -56, 128, -144, 64}, {15, 56, 232, 1008, 4432}, 30] (* Harvey P. Dale, Mar 02 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 27 2013
STATUS
approved