login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228322
The Wiener index of the graph obtained by applying Mycielski's construction to the hypercube graph Q(n) (n>=1).
0
15, 56, 232, 1008, 4432, 19328, 82944, 349952, 1454848, 5978112, 24352768, 98594816, 397479936, 1597865984, 6411452416, 25695289344, 102901940224, 411899002880, 1648290693120, 6594803793920, 26383058206720, 105541162500096, 422185252421632
OFFSET
1,1
REFERENCES
D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
LINKS
R. Balakrishnan, S. F. Raj, The Wiener number of powers of the Mycielskian, Discussiones Math. Graph Theory, 30, 2010, 489-498 (see Theorem 2.1).
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
a(n) = 6*2^(2*n) - 2^(n-2)*(4 + 12*n + n^2 + n^3).
G.f.: x*(15 - 124*x + 400*x^2 - 560*x^3 + 320*x^4)/((1 - 4*x)*(1 - 2*x)^4).
EXAMPLE
a(1)=15 because Q(1) is the 1-edge path whose Mycielskian is the cycle graph C(5) with Wiener index 5*1+5*2 = 15.
MAPLE
a := proc (n) options operator, arrow: 6*2^(2*n)-2^(n-2)*(4+12*n+n^2+n^3) end proc: seq(a(n), n = 1 .. 25);
MATHEMATICA
LinearRecurrence[{12, -56, 128, -144, 64}, {15, 56, 232, 1008, 4432}, 30] (* Harvey P. Dale, Mar 02 2019 *)
CROSSREFS
Sequence in context: A250956 A243318 A304295 * A219630 A219849 A157856
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 27 2013
STATUS
approved