login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228323
a(1)=1; thereafter a(n) is the smallest number m not yet in the sequence such that at least one of the concatenations a(n-1)||m or m||a(n-1) is prime.
6
1, 3, 2, 9, 5, 21, 4, 7, 6, 13, 10, 19, 16, 27, 8, 11, 15, 23, 12, 17, 20, 29, 14, 33, 26, 47, 18, 31, 25, 39, 22, 37, 24, 41, 30, 49, 34, 57, 28, 43, 36, 59, 32, 51, 38, 53, 42, 61, 45, 67, 58, 69, 55, 63, 44, 81, 35, 71, 48, 77, 50, 87, 62, 99, 40, 73, 46
OFFSET
1,2
COMMENTS
Does every number appear in the sequence?
If a(n) is coprime to 10, then a(n+1) exists by Dirichlet's theorem. - Eric M. Schmidt, Aug 20 2013 [In more detail: let a(n) have d digits, and consider the arithmetic progression k*10^d + a(n), and apply Dirichlet's theorem. This gives a number k such that the concatenation k||a(n) is prime. N. J. A. Sloane, Nov 08 2020]
The argument in A068695 shows that a(n) always exists. - N. J. A. Sloane, Nov 11 2020
LINKS
Eric Angelini, Primes by concatenation, Posting to the Sequence Fans Mailing List, Aug 14 2013.
Michael De Vlieger, Labeled log-log scatterplot of a(n) n = 1..2^14, showing m coprime to 10 in red, otherwise dark blue.
MATHEMATICA
f[s_] := Block[{k = 2, idj = IntegerDigits@ s[[-1]]}, While[idk = IntegerDigits@ k; MemberQ[s, k] || ( !PrimeQ@ FromDigits@ Join[idj, idk] && !PrimeQ@ FromDigits@ Join[idk, idj]), k++]; Append[s, k]]; Nest[f, {1}, 66] (* Robert G. Wilson v, Aug 20 2013 *)
PROG
(Python)
from sympy import isprime
from itertools import islice
def c(s, t): return isprime(int(s+t)) or isprime(int(t+s))
def agen():
aset, k, mink = set(), 1, 2
while True:
an = k; aset.add(an); yield an; s, k = str(an), mink
while k in aset or not c(s, str(k)): k += 1
while mink in aset: mink += 1
print(list(islice(agen(), 56))) # Michael S. Branicky, Oct 17 2022
CROSSREFS
See A228324 for the primes that arise.
Sequence in context: A033313 A231442 A319107 * A350831 A140590 A329211
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 20 2013
EXTENSIONS
More terms from Alois P. Heinz, Aug 20 2013
STATUS
approved