

A068695


Smallest number (not beginning with 0) that yields a prime when placed on the right of n.


11



1, 3, 1, 1, 3, 1, 1, 3, 7, 1, 3, 7, 1, 9, 1, 3, 3, 1, 1, 11, 1, 3, 3, 1, 1, 3, 1, 1, 3, 7, 1, 17, 1, 7, 3, 7, 3, 3, 7, 1, 9, 1, 1, 3, 7, 1, 9, 7, 1, 3, 13, 1, 23, 1, 7, 3, 1, 7, 3, 1, 3, 11, 1, 1, 3, 1, 3, 3, 1, 1, 9, 7, 3, 3, 1, 1, 3, 7, 7, 9, 1, 1, 9, 19, 3, 3, 7, 1, 23, 7, 1, 9, 7, 1, 3, 7, 1, 3, 1, 9, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Max Alekseyev (see link) shows that a(n) always exists. Note that although his argument makes use of some potentially large constants (see the comments in A060199), the proof shows that a(n) exists for all n.  N. J. A. Sloane, Nov 13 2020
Many numbers become prime by appending a onedigit odd number. Some numbers (such as 20, 32, 51, etc.) require a 2digit odd number (A032352 has these). In the first 100000 values of n there are only 22 that require a 3digit odd number (A091089). There probably are some values that require odd numbers of 4 or more digits, but these are likely to be very large.  Chuck Seggelin (barkeep(AT)plastereddragon.com), Dec 18 2003


LINKS

David W. Wilson, Table of n, a(n) for n=1..10000
Max Alekseyev, Given n, there is a k such that the concatenation nk is a prime, Nov 09 2020
Index entries for primes involving decimal expansion of n


EXAMPLE

a(20)=11 because 11 is the minimum odd number which when appended to 20 forms a prime (201, 203, 205, 207, 209 are all nonprime, 2011 is prime).


MAPLE

T:=proc(t) local x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, k, n; for n from 1 to q do a:=10*n+1; k:=1;
while not isprime(a) do k:=k+1; a:=n*10^T(k)+k; od;
print(k); od; end: P(10^5); # Paolo P. Lava, Apr 10 2014


MATHEMATICA

d[n_]:=IntegerDigits[n]; t={}; Do[k=1; While[!PrimeQ[FromDigits[Join[d[n], d[k]]]], k++]; AppendTo[t, k], {n, 102}]; t (* Jayanta Basu, May 21 2013 *)
mon[n_]:=Module[{k=1}, While[!PrimeQ[n*10^IntegerLength[k]+k], k+=2]; k]; Array[mon, 110] (* Harvey P. Dale, Aug 13 2018 *)


PROG

(PARI) A068695=n>for(i=1, 9e9, ispseudoprime(eval(Str(n, i)))&&return(i)) \\ M. F. Hasler, Oct 29 2013
(Python)
from sympy import isprime
from itertools import count
def a(n): return next(k for k in count(1) if isprime(int(str(n)+str(k))))
print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Oct 18 2022


CROSSREFS

Cf. A032352 (a(n) requires at least a 2 digit odd number), A091089 (a(n) requires at least a 3 digit odd number).
Cf. also A060199, A228325, A336893.
Sequence in context: A073310 A174414 A046929 * A110787 A325982 A202338
Adjacent sequences: A068692 A068693 A068694 * A068696 A068697 A068698


KEYWORD

base,easy,nonn


AUTHOR

Amarnath Murthy, Mar 03 2002


EXTENSIONS

More terms from Chuck Seggelin (barkeep(AT)plastereddragon.com), Dec 18 2003
Entry revised by N. J. A. Sloane, Feb 20 2006
More terms from David Wasserman, Feb 14 2006


STATUS

approved



