login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245730
Primes of the form 1+2^k+2^(2*k)+...+2^((n-1)*k) for some k>0, n>0.
3
3, 5, 7, 17, 31, 73, 127, 257, 8191, 65537, 131071, 262657, 524287, 2147483647, 4432676798593, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
OFFSET
1,1
COMMENTS
Contains the Mersenne primes A000668 which correspond to k=1. In base 2, primes with n 1's and k-1 0's between pairs of 1's. Is a factor of 2^(n*k)-1.
Primes of the form (2^(n*k)-1)/(2^k-1). k=1 gives Mersenne primes 2^n-1 for n in A000043. n=2 and k=2^m gives Fermat primes 2^(2^m)+1 (A019434) for m = 0 to 4. k=n gives (2^(n^2)-1)/(2^n-1) which is prime for n = 2, 3, 7, 59 (A156585, n must be prime). The only other term below 2000 digits is 262657 for k=9 and n=3. - Jens Kruse Andersen, Aug 02 2014
The case n=3 gives the primes in A051154. - John Blythe Dobson
Wells Johnson (1977), 199, Corollary 6, proved that members of this sequence cannot be Wieferich primes (A001220). - John Blythe Dobson
REFERENCES
Wells Johnson, On the nonvanishing of Fermat quotients (mod p), J. für Math. 292 (1977), 196-200.
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..25
EXAMPLE
The number 4432676798593 is in the list as it is prime and it is equal to 1+2^7+2^(2*7)+2^(3*7)+2^(4*7)+2^(5*7)+2^(6*7).
PROG
(Python) from sympy2 import isprime
sorted([int(('0'*m+'1')*n, 2) for m in range(50) for n in range(1, 50) if isprime(int(('0'*m+'1')*n, 2))])
CROSSREFS
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Jul 30 2014
STATUS
approved