OFFSET
0,5
COMMENTS
T(0,0) = 1 by convention.
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
EXAMPLE
T(2,0) = 1: (2,2).
T(2,1) = 2: (1,2), (2,1).
T(2,2) = 1: (1,1).
T(3,1) = 12: (1,1,2), (1,2,1), (1,2,2), (1,2,3), (1,3,2), (2,1,1), (2,1,2), (2,1,3), (2,2,1), (2,3,1), (3,1,2), (3,2,1).
T(3,3) = 1: (1,1,1).
Triangle T(n,k) begins:
0 : 1;
1 : 0, 1;
2 : 1, 2, 1;
3 : 14, 12, 0, 1;
4 : 181, 68, 6, 0, 1;
5 : 2584, 520, 20, 0, 0, 1;
6 : 41973, 4542, 120, 20, 0, 0, 1;
7 : 776250, 46550, 672, 70, 0, 0, 0, 1;
8 : 16231381, 540136, 5516, 112, 70, 0, 0, 0, 1;
...
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
g:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))):
T:= (n, k)-> g(n, k) -g(n, k+1):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; g[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[n_, k_] := g[n, k] - g[n, k+1]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 30 2014
STATUS
approved