The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245734 G.f. A(x) satisfies 0 = A(0) and 0 = f(x, A(x)) where f(u, v) = (v - u) * (1 + u*v) - v * (v + u). 3
 0, 1, 2, 6, 20, 74, 294, 1228, 5318, 23662, 107512, 496726, 2326462, 11020424, 52706138, 254148326, 1234240140, 6031310162, 29635011990, 146323849876, 725635937678, 3612656833694, 18049975590512, 90474958563374, 454841633027198, 2292796383312656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (1 - x - x^2 - sqrt(1 - 6*x + 3*x^2 + 2*x^3 + x^4)) / (2 * (1 - x)). G.f.: x / (1 - x - x^2 - (1 - x) / (1 - x - x^2 - (1 - x) / ...)) continued fraction. a(n) = A245735(-n) for all n in Z. 0 = a(n)*(n-1) + a(n+1)*(n+2) + a(n+2)*(n+5) + a(n+3)*(-9*n-27) + a(n+4)*(7*n+26) + a(n+5)*(-n-5) for all n in Z. 0 = a(n)*(+a(n+1) +4*a(n+2) +7*a(n+3) -45*a(n+4) +40*a(n+5) -7*a(n+6)) + a(n+1)*(-2*a(n+1) -4*a(n+2) +31*a(n+3) -44*a(n+4) +24*a(n+5) -4*a(n+6)) + a(n+2)*(-2*a(n+2) +a(n+3) +4*a(n+4) -a(n+6)) +a(n+3)*(-27*a(n+3) +97*a(n+4) -109*a(n+5) +27*a(n+6)) +a(n+4)*(-18*a(n+4) +40*a(n+5) -16*a(n+6)) +a(n+5)*(+2*a(n+5) +a(n+6)) for all n in Z EXAMPLE G.f. = x + 2*x^2 + 6*x^3 + 20*x^4 + 74*x^5 + 294*x^6 + 1228*x^7 + 5318*x^8 + ... MATHEMATICA CoefficientList[Series[(1-x-x^2 -Sqrt[1-6*x+3*x^2+2*x^3+x^4])/(2*(1-x)), {x, 0, 50}], x] (* G. C. Greubel, Aug 06 2018 *) PROG (PARI) {a(n) = my(A); n++; A = O(x); if( n<0, for(k=0, -n/2, A = x / (1 + (x - x^2) + (x - x^2) * A)), for(k=1, n, A = x / (1 - (x + x^2) - (1 - x) * A)); ); polcoeff(A, abs(n)) }; (PARI) {a(n) = polcoeff( if( n<0, ((-1 - x + x^2) + sqrt(1 + 2*x + 3*x^2 - 6*x^3 + x^4 + x^2 * O(x^-n) )) / (2 * (x - x^2)), ((1 - x - x^2) - sqrt(1 - 6*x + 3*x^2 + 2*x^3 + x^4 + x * O(x^n) )) / (2 * (1 - x))), abs(n))}; (MAGMA) m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-x^2 -Sqrt(1-6*x+3*x^2+2*x^3+x^4))/(2*(1-x)))); // G. C. Greubel, Aug 06 2018 CROSSREFS Cf. A245735. Sequence in context: A150157 A145867 A188144 * A150158 A034010 A135588 Adjacent sequences:  A245731 A245732 A245733 * A245735 A245736 A245737 KEYWORD nonn AUTHOR Michael Somos, Jul 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)