login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245734
G.f. A(x) satisfies 0 = A(0) and 0 = f(x, A(x)) where f(u, v) = (v - u) * (1 + u*v) - v * (v + u).
3
0, 1, 2, 6, 20, 74, 294, 1228, 5318, 23662, 107512, 496726, 2326462, 11020424, 52706138, 254148326, 1234240140, 6031310162, 29635011990, 146323849876, 725635937678, 3612656833694, 18049975590512, 90474958563374, 454841633027198, 2292796383312656
OFFSET
0,3
LINKS
FORMULA
G.f.: (1 - x - x^2 - sqrt(1 - 6*x + 3*x^2 + 2*x^3 + x^4)) / (2 * (1 - x)).
G.f.: x / (1 - x - x^2 - (1 - x) / (1 - x - x^2 - (1 - x) / ...)) continued fraction.
a(n) = A245735(-n) for all n in Z.
0 = a(n)*(n-1) + a(n+1)*(n+2) + a(n+2)*(n+5) + a(n+3)*(-9*n-27) + a(n+4)*(7*n+26) + a(n+5)*(-n-5) for all n in Z.
0 = a(n)*(+a(n+1) +4*a(n+2) +7*a(n+3) -45*a(n+4) +40*a(n+5) -7*a(n+6)) + a(n+1)*(-2*a(n+1) -4*a(n+2) +31*a(n+3) -44*a(n+4) +24*a(n+5) -4*a(n+6)) + a(n+2)*(-2*a(n+2) +a(n+3) +4*a(n+4) -a(n+6)) +a(n+3)*(-27*a(n+3) +97*a(n+4) -109*a(n+5) +27*a(n+6)) +a(n+4)*(-18*a(n+4) +40*a(n+5) -16*a(n+6)) +a(n+5)*(+2*a(n+5) +a(n+6)) for all n in Z
EXAMPLE
G.f. = x + 2*x^2 + 6*x^3 + 20*x^4 + 74*x^5 + 294*x^6 + 1228*x^7 + 5318*x^8 + ...
MATHEMATICA
CoefficientList[Series[(1-x-x^2 -Sqrt[1-6*x+3*x^2+2*x^3+x^4])/(2*(1-x)), {x, 0, 50}], x] (* G. C. Greubel, Aug 06 2018 *)
PROG
(PARI) {a(n) = my(A); n++; A = O(x); if( n<0, for(k=0, -n/2, A = x / (1 + (x - x^2) + (x - x^2) * A)), for(k=1, n, A = x / (1 - (x + x^2) - (1 - x) * A)); ); polcoeff(A, abs(n)) };
(PARI) {a(n) = polcoeff( if( n<0, ((-1 - x + x^2) + sqrt(1 + 2*x + 3*x^2 - 6*x^3 + x^4 + x^2 * O(x^-n) )) / (2 * (x - x^2)), ((1 - x - x^2) - sqrt(1 - 6*x + 3*x^2 + 2*x^3 + x^4 + x * O(x^n) )) / (2 * (1 - x))), abs(n))};
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-x^2 -Sqrt(1-6*x+3*x^2+2*x^3+x^4))/(2*(1-x)))); // G. C. Greubel, Aug 06 2018
CROSSREFS
Cf. A245735.
Sequence in context: A371712 A145867 A188144 * A150158 A034010 A135588
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 30 2014
STATUS
approved