login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371712
Expansion of g.f. A(x) satisfying A( 2*x^2/(1-2*x)^2 ) = 2*A(x)^2.
2
1, 2, 6, 20, 74, 292, 1204, 5112, 22182, 97964, 439252, 1995864, 9175108, 42610024, 199643240, 942605936, 4480195078, 21417889996, 102907803268, 496639331384, 2406182074924, 11698276321976, 57051240809688, 279016001376400, 1368066809205340, 6723746064317432, 33118248167688264
OFFSET
1,2
COMMENTS
Compare to D( x^2/(1-2*x^2)^2 ) = D(x)^2 where D(x) = C(x) - 1 and C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A( x/(1+4*x) ) = -A(-x).
(2) A( 2*x^2/(1-2*x)^2 ) = 2*A(x)^2.
(3) A( 8*x^4/(1-4*x)^2 ) = 8*A(x)^4.
(4) A( 2*x^2 ) = 2*A( x/(1+2*x) )^2.
(5) A( 2*x^2/(1-x)^2 ) = 2*A( x/(1+x) )^2.
(6) A( 2*x^2/(1-3*x)^2 ) = 2*A( x/(1-x) )^2.
(7) A( 2*x^2/(1-4*x)^2 ) = 2*A( x/(1-2*x) )^2.
(8) A( 8*x^4/(1-4*x^2)^2 ) = 8*A( x/(1+2*x) )^4 = 2*A( 2*x^2 )^2.
(9) A(x/B(x)) = x where B(x) = 2*x + B(2*x^2)^(1/2) is the g.f. of A371711.
The radius of convergence is r = (3 - sqrt(5))/4 = 0.19098300562505257...
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 20*x^4 + 74*x^5 + 292*x^6 + 1204*x^7 + 5112*x^8 + 22182*x^9 + 97964*x^10 + 439252*x^11 + 1995864*x^12 + ...
where
A( 2*x^2/(1-2*x)^2 ) = 2*A(x)^2 and A( x/(1+4*x) ) = -A(-x).
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 264*x^6 + 1120*x^7 + 4864*x^8 + 21504*x^9 + 96416*x^10 + 437376*x^11 + 2004480*x^12 + ...
A( x/(1+2*x) ) = x + 2*x^3 + 10*x^5 + 60*x^7 + 422*x^9 + 3228*x^11 + 26052*x^13 + 217464*x^15 + 1861126*x^17 + ...
A( x/(1+2*x) )^2 = x^2 + 4*x^4 + 24*x^6 + 160*x^8 + 1184*x^10 + 9344*x^12 + 77056*x^14 + 654336*x^16 + ...
where A( x/(1+2*x) )^2 = A( 2*x^2 )/2.
If B(x) = x/Series_Reversion(A(x)), so that A(x/B(x)) = x, then
B(x) = 1 + 2*x + 2*x^2 + 2*x^4 - 4*x^6 + 22*x^8 - 36*x^10 - 108*x^12 + 376*x^14 + 1894*x^16 - 4180*x^18 - 10628*x^20 + ... + A371711(n)*x^n + ...
such that
1 = (...(((((((B(x) - 2*x)^2 - (2*x)^2)^2 - (2*x)^4)^2 - (2*x)^8)^2 - (2*x)^16)^2 - (2*x)^32)^2 - (2*x)^64)^2 - ...), an infinite nested square.
SPECIFIC VALUES.
A(1/6) = 0.29789229906054667355755647199664499026621078146355988...
A(1/7) = 0.22028240911749270058184659171007954537982971846657839...
A(1/8) = 2*A(1/6)^2 = 0.1774796436791563531387838244194094019267...
A(1/9) = 0.14936830726543771830506265617628097833926210696977323...
A(1/10) = 0.1292436104709804779603852368294850482664948994909500...
A(2/25) = 2*A(1/7)^2 = 0.097048679533212862523948544941373916211...
A(1/18) = 2*A(1/8)^2 = 0.062998047840960607307519834466070733930...
A(2/49) = 2*A(1/9)^2 = 0.044621782430684428529594838525892322559...
A(1/32) = 2*A(1/10)^2 = 0.03340782169514906928814772123377625594...
PROG
(PARI) {a(n) = my(A=[1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A);
A[#A] = polcoeff( subst(F, x, 2*x^2/(1-2*x)^2 ) - 2*F^2, #A+1)/4 ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A371711.
Sequence in context: A150155 A150156 A150157 * A145867 A188144 A245734
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 07 2024
STATUS
approved