login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371715
G.f. A(x) = Sum_{n>=0} a(n)*x^n where a(n) = Sum_{k=0..n} ( [x^k] A(2*x)^(n+1) (mod 2^(n+1)) ) for n >= 0 with a(0) = 1.
1
1, 1, 7, 17, 55, 113, 135, 321, 2103, 3217, 8295, 18145, 33687, 74289, 128455, 321153, 870135, 1201105, 3696423, 6715937, 17466967, 31467889, 72111239, 173224385, 382697911, 552100625, 1442627047, 2558102881, 3487807767, 11651874993, 21616075591, 47612431617, 108598963319
OFFSET
0,3
COMMENTS
What is the limit a(n)/(n*2^n) ? Does it exist ?. - Vaclav Kotesovec, May 03 2024
LINKS
Vaclav Kotesovec, Plot of a(n)/(n*2^n)
EXAMPLE
G.f.: A(x) = 1 + x + 7*x^2 + 17*x^3 + 55*x^4 + 113*x^5 + 135*x^6 + 321*x^7 + 2103*x^8 + 3217*x^9 + 8295*x^10 + 18145*x^11 + 33687*x^12 + ...
The table of coefficients of x^k in A(2*x)^n begins:
n=1: [1, 2, 28, 136, 880, 3616, 8640, ...];
n=2: [1, 4, 60, 384, 3088, 18368, 99520, ...];
n=3: [1, 6, 96, 752, 6960, 50592, 350848, ...];
n=4: [1, 8, 136, 1248, 12848, 107520, 864000, ...];
n=5: [1, 10, 180, 1880, 21120, 197312, 1765760, ...];
n=6: [1, 12, 228, 2656, 32160, 329088, 3210624, ...];
n=7: [1, 14, 280, 3584, 46368, 512960, 5383168, ...];
n=8: [1, 16, 336, 4672, 64160, 760064, 8500480, ...];
...
from which each term in row n may be reduced modulo 2^n to form the following triangle (trailing zeros suppressed):
A(2*x) (mod 2): [1];
A(2*x)^2 (mod 2^2): [1, 0];
A(2*x)^3 (mod 2^3): [1, 6, 0];
A(2*x)^4 (mod 2^4): [1, 8, 8, 0];
A(2*x)^5 (mod 2^5): [1, 10, 20, 24, 0];
A(2*x)^6 (mod 2^6): [1, 12, 36, 32, 32, 0];
A(2*x)^7 (mod 2^7): [1, 14, 24, 0, 32, 64, 0];
A(2*x)^8 (mod 2^8): [1, 16, 80, 64, 160, 0, 0, 0];
A(2*x)^9 (mod 2^9): [1, 18, 396, 296, 464, 224, 320, 384, 0];
A(2*x)^10 (mod 2^10): [1, 20, 460, 192, 624, 832, 64, 512, 512, 0];
A(2*x)^11 (mod 2^11): [1, 22, 528, 784, 80, 1120, 1664, 1536, 1536, 1024, 0];
A(2*x)^12 (mod 2^12): [1, 24, 600, 2592, 3920, 3328, 2048, 2048, 3584, 0, 0, 0]; ...
The row sums of the above triangle form this sequence.
SPECIFIC VALUES.
A(1/3) = 5.16342352287698185339110618005914219821...
A(1/4) = 2.39174482766273066991171836527389776948...
A(1/5) = 1.76139991234861303660669400163149230805...
A(1/6) = 1.50260759835187695870739455561470784874...
A(t) = 2 at t = 0.22255799946572991869110865358904969874...
A(t) = 3 at t = 0.27939565401912059198552904564135101228...
A(t) = 4 at t = 0.31035599522228672966119371322774606931...
A(t) = 5 at t = 0.33063501311279486918626289986794151717...
PROG
(PARI) /* Returns vector A of N terms */
{N = 40; A=vector(N); A[1]=1; for(n=2, #A, A[n]=1; A[n] = sum(k=0, n-1, ( polcoeff( Ser(A)^n, k)*2^k )%(2^n) ) ); A}
CROSSREFS
Sequence in context: A352616 A094534 A262106 * A081632 A276907 A293464
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 30 2024
STATUS
approved