login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276907
L.g.f.: Sum_{n>=1} [ Sum_{k>=1} k^n * x^(2*k-1) ]^n / n.
2
1, 1, 7, 17, 56, 199, 890, 4649, 27817, 195946, 1684398, 17397323, 208799982, 2932164012, 49785808832, 1022745137705, 24671296028079, 695270673553051, 23526126768837873, 965093874912658722, 46827415587504280547, 2655503102769481320544, 179856174616910379655073, 14761130793635395568878091, 1439881917495260610082685956, 164363140573098989525137162900, 22322323085863965044351721067969
OFFSET
1,3
COMMENTS
L.g.f. equals the logarithm of the g.f. of A276906.
LINKS
FORMULA
L.g.f.: Sum_{n>=1} [ Sum_{k=1..n} A008292(n,k) * x^(2*k-1) / (1-x^2)^(n+1) ]^n / n, where A008292 are the Eulerian numbers.
EXAMPLE
L.g.f.: A(x) = x + x^2/2 + 7*x^3/3 + 17*x^4/4 + 56*x^5/5 + 199*x^6/6 + 890*x^7/7 + 4649*x^8/8 + 27817*x^9/9 + 195946*x^10/10 + 1684398*x^11/11 + 17397323*x^12/12 +...
such that A(x) equals the series:
A(x) = Sum_{n>=1} (x + 2^n*x^3 + 3^n*x^5 +...+ k^n*x^(2*k-1) +...)^n/n.
This logarithmic series can be written using the Eulerian numbers like so:
A(x) = x/(1-x^2)^2 + (x + x^3)^2/(1-x^2)^6/2 + (x + 4*x^3 + x^5)^3/(1-x^2)^12/3 + (x + 11*x^3 + 11*x^5 + x^7)^4/(1-x^2)^20/4 + (x + 26*x^3 + 66*x^5 + 26*x^7 + x^9)^5/(1-x^2)^30/5 + (x + 57*x^3 + 302*x^5 + 302*x^7 + 57*x^9 + x^11)^6/(1-x^2)^42/6 +...+ [ Sum_{k=1..n} A008292(n,k) * x^(2*k-1) ]^n / (1-x^2)^(n*(n+1))/n +...
where
exp(A(x)) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 18*x^5 + 53*x^6 + 188*x^7 + 799*x^8 + 4001*x^9 + 24050*x^10 + 179248*x^11 + 1639637*x^12 +...+ A276906(n)*x^n +...
PROG
(PARI) {a(n) = n * polcoeff( sum(m=1, n, sum(k=1, n, k^m * x^(2*k-1) +x*O(x^n))^m/m ), n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}
{a(n) = my(A=1, Oxn=x*O(x^n)); A = sum(m=1, n+1, sum(k=1, m, A008292(m, k) * x^(2*k-1)/(1-x^2 +Oxn)^(m+1) )^m / m ); n*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A262106 A371715 A081632 * A293464 A106010 A136192
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 28 2016
STATUS
approved