login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276907 L.g.f.: Sum_{n>=1} [ Sum_{k>=1} k^n * x^(2*k-1) ]^n / n. 2
1, 1, 7, 17, 56, 199, 890, 4649, 27817, 195946, 1684398, 17397323, 208799982, 2932164012, 49785808832, 1022745137705, 24671296028079, 695270673553051, 23526126768837873, 965093874912658722, 46827415587504280547, 2655503102769481320544, 179856174616910379655073, 14761130793635395568878091, 1439881917495260610082685956, 164363140573098989525137162900, 22322323085863965044351721067969 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

L.g.f. equals the logarithm of the g.f. of A276906.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..200

FORMULA

L.g.f.: Sum_{n>=1} [ Sum_{k=1..n} A008292(n,k) * x^(2*k-1) / (1-x^2)^(n+1) ]^n / n, where A008292 are the Eulerian numbers.

EXAMPLE

L.g.f.: A(x) = x + x^2/2 + 7*x^3/3 + 17*x^4/4 + 56*x^5/5 + 199*x^6/6 + 890*x^7/7 + 4649*x^8/8 + 27817*x^9/9 + 195946*x^10/10 + 1684398*x^11/11 + 17397323*x^12/12 +...

such that A(x) equals the series:

A(x) = Sum_{n>=1} (x + 2^n*x^3 + 3^n*x^5 +...+ k^n*x^(2*k-1) +...)^n/n.

This logarithmic series can be written using the Eulerian numbers like so:

A(x) = x/(1-x^2)^2 + (x + x^3)^2/(1-x^2)^6/2 + (x + 4*x^3 + x^5)^3/(1-x^2)^12/3 + (x + 11*x^3 + 11*x^5 + x^7)^4/(1-x^2)^20/4 + (x + 26*x^3 + 66*x^5 + 26*x^7 + x^9)^5/(1-x^2)^30/5 + (x + 57*x^3 + 302*x^5 + 302*x^7 + 57*x^9 + x^11)^6/(1-x^2)^42/6 +...+ [ Sum_{k=1..n} A008292(n,k) * x^(2*k-1) ]^n / (1-x^2)^(n*(n+1))/n +...

where

exp(A(x)) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 18*x^5 + 53*x^6 + 188*x^7 + 799*x^8 + 4001*x^9 + 24050*x^10 + 179248*x^11 + 1639637*x^12 +...+ A276906(n)*x^n +...

PROG

(PARI) {a(n) = n * polcoeff( sum(m=1, n, sum(k=1, n, k^m * x^(2*k-1) +x*O(x^n))^m/m ), n)}

for(n=1, 30, print1(a(n), ", "))

(PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}

{a(n) = my(A=1, Oxn=x*O(x^n)); A = sum(m=1, n+1, sum(k=1, m, A008292(m, k) * x^(2*k-1)/(1-x^2 +Oxn)^(m+1) )^m / m ); n*polcoeff(A, n)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A276906, A276750.

Sequence in context: A094534 A262106 A081632 * A293464 A106010 A136192

Adjacent sequences:  A276904 A276905 A276906 * A276908 A276909 A276910

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 4 18:32 EDT 2022. Contains 357239 sequences. (Running on oeis4.)