The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276908 E.g.f. A(x) satisfies: Series_Reversion( LambertW(A(x)) ) = -LambertW(-A(x)). 3
 1, 0, -3, 0, 5, 0, 609, 0, -49239, 0, 13360325, 0, -15252271827, 0, 37424782201065, 0, -170209716095463727, 0, 1318010670452522053773, 0, -16258330635018856956323115, 0, 303578009078402791805745874289, 0, -8239767220259502118041112282583175, 0, 314540395737200378455353074387646404949, 0, -16429342682031325194203779796586447506765059, 0, 1147197863673453312133563419500631514117221228025, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS It appears that a(6*k+5) = 2 (mod 3) for k>=0 with a(n) = 0 (mod 3) elsewhere. E.g.f. A(x) equals the series reversion of the e.g.f. of A276909. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..301 FORMULA E.g.f. A(x) satisfies: (1) A( LambertW(A(x)) ) = x*exp(-x), (2) A( -LambertW(-A(x)) ) = x*exp(x), where LambertW( x*exp(x) ) = x. (3) Series_Reversion( A( LambertW(x) ) ) = A( -LambertW(-x) ). EXAMPLE E.g.f.: A(x) = x - 3*x^3/3! + 5*x^5/5! + 609*x^7/7! - 49239*x^9/9! + 13360325*x^11/11! - 15252271827*x^13/13! + 37424782201065*x^15/15! - 170209716095463727*x^17/17! + 1318010670452522053773*x^19/19! - 16258330635018856956323115*x^21/21! + 303578009078402791805745874289*x^23/23! - 8239767220259502118041112282583175*x^25/25! +... such that Series_Reversion( LambertW(A(x)) ) = LambertW(-A(x)). RELATED SERIES. LambertW(A(x)) = x - 2*x^2/2! + 6*x^3/3! - 40*x^4/4! + 360*x^5/5! - 4176*x^6/6! + 59248*x^7/7! - 978048*x^8/8! + 18529920*x^9/9! - 397792000*x^10/10! + 9541483776*x^11/11! - 252320449536*x^12/12! + 7287410271232*x^13/13! - 229140322854912*x^14/14! + 7813274134640640*x^15/15! - 284528460591824896*x^16/16! + 10907160860365848576*x^17/17! - 452737238590418780160*x^18/18! + 21213627569654340321280*x^19/19! +... exp(A(x)) = 1 + x + x^2/2! - 2*x^3/3! - 11*x^4/4! - 24*x^5/5! + 61*x^6/6! + 1240*x^7/7! + 6665*x^8/8! - 34496*x^9/9! - 728999*x^10/10! + 8173056*x^11/11! + 172370749*x^12/12! - 13734849920*x^13/13! - 218875559083*x^14/14! + 35623302896896*x^15/15! + 613795913727121*x^16/16! +... Also, A( LambertW(A(x)) ) = x*exp(-x), where LambertW(x) = x - 2*x^2/2! + 9*x^3/3! - 64*x^4/4! + 625*x^5/5! - 7776*x^6/6! + 117649*x^7/7! - 2097152*x^8/8! +...+ -n^(n-1)*(-x)^n/n! +... PROG (PARI) {a(n) = my(A=x +x*O(x^n), W = serreverse(x*exp(x +x*O(x^n)))); for(i=1, n, A = A + (x - subst(subst(W, x, A), x, -subst(W, x, -A)))/2); n!*polcoeff(A, n)} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A276909. Sequence in context: A227901 A118657 A047760 * A242246 A229979 A050925 Adjacent sequences: A276905 A276906 A276907 * A276909 A276910 A276911 KEYWORD sign AUTHOR Paul D. Hanna, Sep 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 19:07 EST 2022. Contains 358563 sequences. (Running on oeis4.)