login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276908
E.g.f. A(x) satisfies: Series_Reversion( LambertW(A(x)) ) = -LambertW(-A(x)).
3
1, 0, -3, 0, 5, 0, 609, 0, -49239, 0, 13360325, 0, -15252271827, 0, 37424782201065, 0, -170209716095463727, 0, 1318010670452522053773, 0, -16258330635018856956323115, 0, 303578009078402791805745874289, 0, -8239767220259502118041112282583175, 0, 314540395737200378455353074387646404949, 0, -16429342682031325194203779796586447506765059, 0, 1147197863673453312133563419500631514117221228025, 0
OFFSET
1,3
COMMENTS
It appears that a(6*k+5) = 2 (mod 3) for k>=0 with a(n) = 0 (mod 3) elsewhere.
E.g.f. A(x) equals the series reversion of the e.g.f. of A276909.
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A( LambertW(A(x)) ) = x*exp(-x),
(2) A( -LambertW(-A(x)) ) = x*exp(x),
where LambertW( x*exp(x) ) = x.
(3) Series_Reversion( A( LambertW(x) ) ) = A( -LambertW(-x) ).
EXAMPLE
E.g.f.: A(x) = x - 3*x^3/3! + 5*x^5/5! + 609*x^7/7! - 49239*x^9/9! + 13360325*x^11/11! - 15252271827*x^13/13! + 37424782201065*x^15/15! - 170209716095463727*x^17/17! + 1318010670452522053773*x^19/19! - 16258330635018856956323115*x^21/21! + 303578009078402791805745874289*x^23/23! - 8239767220259502118041112282583175*x^25/25! +...
such that Series_Reversion( LambertW(A(x)) ) = LambertW(-A(x)).
RELATED SERIES.
LambertW(A(x)) = x - 2*x^2/2! + 6*x^3/3! - 40*x^4/4! + 360*x^5/5! - 4176*x^6/6! + 59248*x^7/7! - 978048*x^8/8! + 18529920*x^9/9! - 397792000*x^10/10! + 9541483776*x^11/11! - 252320449536*x^12/12! + 7287410271232*x^13/13! - 229140322854912*x^14/14! + 7813274134640640*x^15/15! - 284528460591824896*x^16/16! + 10907160860365848576*x^17/17! - 452737238590418780160*x^18/18! + 21213627569654340321280*x^19/19! +...
exp(A(x)) = 1 + x + x^2/2! - 2*x^3/3! - 11*x^4/4! - 24*x^5/5! + 61*x^6/6! + 1240*x^7/7! + 6665*x^8/8! - 34496*x^9/9! - 728999*x^10/10! + 8173056*x^11/11! + 172370749*x^12/12! - 13734849920*x^13/13! - 218875559083*x^14/14! + 35623302896896*x^15/15! + 613795913727121*x^16/16! +...
Also, A( LambertW(A(x)) ) = x*exp(-x), where
LambertW(x) = x - 2*x^2/2! + 9*x^3/3! - 64*x^4/4! + 625*x^5/5! - 7776*x^6/6! + 117649*x^7/7! - 2097152*x^8/8! +...+ -n^(n-1)*(-x)^n/n! +...
PROG
(PARI) {a(n) = my(A=x +x*O(x^n), W = serreverse(x*exp(x +x*O(x^n))));
for(i=1, n, A = A + (x - subst(subst(W, x, A), x, -subst(W, x, -A)))/2); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A276909.
Sequence in context: A227901 A118657 A047760 * A242246 A229979 A050925
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 28 2016
STATUS
approved