login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276904
Number of positive walks with n steps {-3,-2,-1,0,1,2,3} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
9
0, 1, 3, 14, 68, 358, 1966, 11172, 65104, 387029, 2337919, 14309783, 88555917, 553171371, 3483277785, 22087378303, 140913963221, 903876307075, 5825742149049, 37710582868464, 245052827645474, 1598017940728401, 10454217006683855, 68591382498826168
OFFSET
0,3
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
MATHEMATICA
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
A276904[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 2, 3]) (* Davin Park, Oct 10 2016 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Michael Wallner, Sep 21 2016
EXTENSIONS
More terms from Alois P. Heinz, Oct 10 2016
STATUS
approved