login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371714
Expansion of g.f. A(x) satisfying A( x^3*A(x) - x^3*A(x)^2 ) = x^4.
2
1, 1, 2, 5, 13, 40, 126, 409, 1360, 4611, 15878, 55384, 195282, 694910, 2492454, 9001405, 32704855, 119462142, 438441266, 1616001547, 5979144981, 22199682130, 82685478702, 308864831632, 1156806962608, 4343254831180, 16343719170558, 61630500821158, 232854921227616, 881378279895534
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A( x^3*A(x)*(1 - A(x)) ) = x^4.
(2) A( -x^3*A(x)*(1 - A(x)) ) = (1 - sqrt(1 + 4*x^4 - 4*x^8))/2.
(3) A(x) = (1 - sqrt(1 - 4*R(x^4)/x^3))/2, where R(A(x)) = x.
a(n) ~ c * d^n / n^(3/2), where d = 3.9841244648060905977016688650241255776651... and c = 0.13991881826475367145488117165180720475565183... - Vaclav Kotesovec, Apr 05 2024
Let r be the radius of convergence, then A(r) = 1/2, where r = A(r^3/4)^(1/4) = 0.2509961746510523531... = 1/d (d is given above). - Paul D. Hanna, Apr 06 2024
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 40*x^6 + 126*x^7 + 409*x^8 + 1360*x^9 + 4611*x^10 + 15878*x^11 + 55384*x^12 + ...
where A( x^3*A(x)*(1 - A(x)) ) = x^4.
RELATED SERIES.
(1) Let R(x) be the series reversion of A(x), R(A(x)) = x, where
R(x) = x - x^2 + x^5 - 5*x^6 + 10*x^7 - 10*x^8 + 10*x^9 - 46*x^10 + 180*x^11 - 420*x^12 + 665*x^13 - 1085*x^14 + 3150*x^15 - 10190*x^16 + ...
upon comparing the expansion of R(x) to the series
A(x)*(1 - A(x)) = x - x^5 + x^17 - 5*x^21 + 10*x^25 - 10*x^29 + 10*x^33 - 46*x^37 + 180*x^41 - 420*x^45 + 665*x^49 - 1085*x^53 + ...
we see that A(x)*(1 - A(x)) = R(x^4)/x^3.
(2) Let B(x) be the even bisection of A(x),
B(x) = x^2 + 5*x^4 + 40*x^6 + 409*x^8 + 4611*x^10 + 55384*x^12 + ...,
then
B( x^3*A(x)*(1 - A(x)) ) = x^8 - 2*x^12 + 6*x^16 - 20*x^20 + 72*x^24 - 272*x^28 + 1064*x^32 + ... + (-1)^(n-1)*A071356(n-1)*x^(8*n) + ...
that is,
B( x^3*A(x)*(1 - A(x)) ) = (1 + 2*x^4 - sqrt(1 + 4*x^4 - 4*x^8))/4.
SPECIFIC VALUES.
Let r be the radius of convergence, then A(r) = 1/2, and
r = A(r^3/4)^(1/4) = 0.2509961746510523531562794924202947105158...
A(1/4) = 0.4687500009132742494908083392815082722109...
A(1/5) = 0.2756788017179389881387593924191299703438...
A(1/6) = 0.2111022081144963995053917910635203605728...
A(1/8) = 0.1464034536677082355575260818928469620931...
PROG
(PARI) {a(n) = my(A=[1, 1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff(x^4 - subst(F, x, x^3*F - x^3*F^2), #A+3) ); A[n]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 04 2024
STATUS
approved