login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272463
G.f. A(x) satisfies: A( x^2*A(x) - x^2*A(x)^2 ) = x^3.
4
1, 1, 2, 4, 12, 36, 112, 360, 1184, 3969, 13506, 46550, 162160, 570076, 2019864, 7205654, 25859788, 93299268, 338207096, 1231194329, 4499137382, 16498152995, 60689045230, 223891151262, 828156420320, 3070760666368, 11411884518800, 42498639965025, 158575098942194, 592761262161240, 2219513277432130, 8323806778346002, 31262959171040784, 117582688976071889, 442819400938052362, 1669735077567533522, 6303424784771599874, 23822450122837267190
OFFSET
1,3
LINKS
FORMULA
Let B(x) be the series reversion of A(x) so that A(B(x)) = x, then
(1) B(x)^2 = B(B(x)^3) / (x - x^2).
(2) B(x^3)/x^2 = A(x) - A(x)^2.
(3) A(x) = (1 - sqrt(1 - 4*B(x^3)/x^2)) / 2.
(4) A(x) = C( B(x^3)/x^2 ), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers A000108.
a(n) ~ c * d^n / n^(3/2), where d = 3.9343346144956442477821996521921... and c = 0.1374726251259662065926106275441... . - Vaclav Kotesovec, May 03 2016
Let r be the radius of convergence, then A(r) = 1/2, where r = A(r^2/4)^(1/3) = 0.25417258519791494791315235901614229902947074103519177... = 1/d (d is given above). - Paul D. Hanna, Apr 06 2024
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 112*x^7 + 360*x^8 + 1184*x^9 + 3969*x^10 + 13506*x^11 + 46550*x^12 +...
where A( x^2*A(x) - x^2*A(x)^2 ) = x^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 36*x^6 + 112*x^7 + 360*x^8 + 1184*x^9 + 3968*x^10 + 13506*x^11 + 46550*x^12 +...
A(x) - A(x)^2 = x - x^4 + x^10 - 4*x^13 + 6*x^16 - 27*x^22 + 84*x^25 - 119*x^28 - 70*x^31 + 861*x^34 - 2362*x^37 + 2716*x^40 + 4848*x^43 - 31892*x^46 +...
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - x^2 + x^4 - 4*x^5 + 6*x^6 - 27*x^8 + 84*x^9 - 119*x^10 - 70*x^11 + 861*x^12 - 2362*x^13 + 2716*x^14 + 4848*x^15 - 31892*x^16 +...
such that A(x) - A(x)^2 = B(x^3)/x^2.
SPECIFIC VALUES.
A(1/4) = 0.43750716413214762438474169851025169044...
A(1/5) = 0.2728438844373996476937912739143254714680748999753267...
A(1/6) = 0.2099915138524924668889213019413855047403227975244006...
A(1/7) = 0.1720375832939219643807299314288451907008185008379640...
A(1/8) = 0.1461015121522386794470333784876359422356861236711932...
PROG
(PARI) {a(n) = my(A=[1, 1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff(x^3 - subst(F, x, x^2*F - x^2*F^2), #A+2) ); A[n]}
for(n=1, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 29 2016
STATUS
approved