login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273955
G.f. A(x) satisfies: A( x*A(x) - A(x)^2 ) = -x^3.
2
1, 1, -1, 2, -4, 12, -36, 115, -366, 1202, -4016, 13684, -47192, 164550, -578773, 2051994, -7324990, 26306860, -94980720, 344555898, -1255235744, 4590432218, -16845658552, 62014596756, -228956736888, 847546307549, -3145089430938, 11697191534690, -43595085475847, 162793363083734, -609005952973882, 2282129119421879, -8565364253229324, 32195552437196082, -121185775973925826, 456749227410641398
OFFSET
1,4
LINKS
FORMULA
If A(B(x)) = x, then g.f. A(x) and B(x) satisfy:
(1) x*A(x) - A(x)^2 = B(-x^3).
(2) A(x) = x - x*C( B(-x^3)/x^2 ), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
a(n) ~ (-1)^n * c * d^n / n^(3/2), where d = 3.9374997379511376037..., c = 0.034997955229443779... . - Vaclav Kotesovec, Jun 24 2016
EXAMPLE
G.f.: A(x) = x + x^2 - x^3 + 2*x^4 - 4*x^5 + 12*x^6 - 36*x^7 + 115*x^8 - 366*x^9 + 1202*x^10 - 4016*x^11 + 13684*x^12 - 47192*x^13 + 164550*x^14 +...
such that A( x*A(x) - A(x)^2 ) = -x^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 - x^4 + 2*x^5 - 3*x^6 + 12*x^7 - 36*x^8 + 118*x^9 - 366*x^10 + 1202*x^11 - 4004*x^12 + 13684*x^13 - 47192*x^14 + 164604*x^15 +...
x*A(x) - A(x)^2 = -x^3 - x^6 - 3*x^9 - 12*x^12 - 54*x^15 - 264*x^18 - 1362*x^21 - 7300*x^24 - 40245*x^27 - 226746*x^30 - 1299779*x^33 +...
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - x^2 + 3*x^3 - 12*x^4 + 54*x^5 - 264*x^6 + 1362*x^7 - 7300*x^8 + 40245*x^9 - 226746*x^10 + 1299779*x^11 - 7556310*x^12 + 44445150*x^13 - 264010326*x^14 + 1581537357*x^15 - 9543458802*x^16 + 57956158488*x^17 - 353941849554*x^18 +...
such that x*A(x) - A(x)^2 = B(-x^3).
PROG
(PARI) {a(n) = my(A=[1, 1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff(x^3 + subst(F, x, x*F - F^2), #A+1) ); A[n]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Cf. A272411.
Sequence in context: A272463 A217699 A291190 * A054542 A214198 A117757
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 12 2016
STATUS
approved