OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..370
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: -LambertW(-x*exp(x)) / (x*exp(x)). [corrected by Vaclav Kotesovec, Jun 23 2016]
E.g.f.: exp( L(x) ) where L(x) = -LambertW(-x*exp(x)) is the e.g.f. of A216857.
a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n-1) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jun 23 2016
E.g.f.: A(x) = exp(x*exp(x)*A(x)). - Alexander Burstein, Aug 11 2018
From Peter Luschny, Jan 29 2023: (Start)
a(n) = Sum_{j=0..n} binomial(n, j) * j^(n - j) * (j + 1)^(j - 1).
a(n) = Sum_{k=0..n} (-1)^k*A161628(n, k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*A244119(n, k). (End)
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 393*x^4/4! + 5481*x^5/5! + 95053*x^6/6! + 1975821*x^7/7! + 47939601*x^8/8! + 1330923601*x^9/9! + 41629292181*x^10/10! + 1448989481589*x^11/11! + 55561575788953*x^12/12! +...
such that
A(x) = 1 + x*exp(x)*A(x) + x^2/2!*exp(2*x)*A(x)^2 + x^3/3!*exp(3*x)*A(x)^3 + x^4/4!*exp(4*x)*A(x)^4 + x^5/5!*exp(5*x)*A(x)^5 + x^6/6!*exp(6*x)*A(x)^6 +...
The logarithm of A(x) begins:
log(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 224*x^4/4! + 2880*x^5/5! + 47232*x^6/6! + 942592*x^7/7! + 22171648*x^8/8! + 600698880*x^9/9! + 18422374400*x^10/10! +...+ A216857(n)*x^n/n! +...
which equals -LambertW(-x*exp(x)).
MAPLE
A273954 := n -> add(binomial(n, j) * j^(n - j) * (j + 1)^(j - 1), j = 0..n):
seq(A273954(n), n = 0..24); # Peter Luschny, Jan 29 2023
MATHEMATICA
CoefficientList[Series[-LambertW[-x*E^x] / (x*E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 23 2016 *)
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/m!*exp(m*x +x*O(x^n))*A^m) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) x='x+O('x^50); Vec(serlaplace(-lambertw(-x*exp(x))/(x*exp(x)))) \\ G. C. Greubel, Nov 16 2017
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(x))^k/k!))) \\ Seiichi Manyama, Feb 08 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2016
STATUS
approved