The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273954 E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * exp(n*x) * A(x)^n. 18
1, 1, 5, 37, 393, 5481, 95053, 1975821, 47939601, 1330923601, 41629292181, 1448989481589, 55561575788953, 2327512861252281, 105767732851318749, 5182512561142513501, 272391086209524010017, 15287595381259195453089, 912525533175190887597349, 57726267762799335649572549 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: -LambertW(-x*exp(x)) / (x*exp(x)). [corrected by Vaclav Kotesovec, Jun 23 2016]
E.g.f.: exp( L(x) ) where L(x) = -LambertW(-x*exp(x)) is the e.g.f. of A216857.
a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n-1) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jun 23 2016
E.g.f.: A(x) = exp(x*exp(x)*A(x)). - Alexander Burstein, Aug 11 2018
From Peter Luschny, Jan 29 2023: (Start)
a(n) = Sum_{j=0..n} binomial(n, j) * j^(n - j) * (j + 1)^(j - 1).
a(n) = Sum_{k=0..n} (-1)^k*A161628(n, k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*A244119(n, k). (End)
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 393*x^4/4! + 5481*x^5/5! + 95053*x^6/6! + 1975821*x^7/7! + 47939601*x^8/8! + 1330923601*x^9/9! + 41629292181*x^10/10! + 1448989481589*x^11/11! + 55561575788953*x^12/12! +...
such that
A(x) = 1 + x*exp(x)*A(x) + x^2/2!*exp(2*x)*A(x)^2 + x^3/3!*exp(3*x)*A(x)^3 + x^4/4!*exp(4*x)*A(x)^4 + x^5/5!*exp(5*x)*A(x)^5 + x^6/6!*exp(6*x)*A(x)^6 +...
The logarithm of A(x) begins:
log(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 224*x^4/4! + 2880*x^5/5! + 47232*x^6/6! + 942592*x^7/7! + 22171648*x^8/8! + 600698880*x^9/9! + 18422374400*x^10/10! +...+ A216857(n)*x^n/n! +...
which equals -LambertW(-x*exp(x)).
MAPLE
A273954 := n -> add(binomial(n, j) * j^(n - j) * (j + 1)^(j - 1), j = 0..n):
seq(A273954(n), n = 0..24); # Peter Luschny, Jan 29 2023
MATHEMATICA
CoefficientList[Series[-LambertW[-x*E^x] / (x*E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 23 2016 *)
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/m!*exp(m*x +x*O(x^n))*A^m) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) x='x+O('x^50); Vec(serlaplace(-lambertw(-x*exp(x))/(x*exp(x)))) \\ G. C. Greubel, Nov 16 2017
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(x))^k/k!))) \\ Seiichi Manyama, Feb 08 2023
CROSSREFS
Cf. A273953, A216857, A357247, A360176 (column 1 unsigned).
Sequence in context: A112937 A258378 A368322 * A092649 A179923 A190628
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 02:30 EDT 2024. Contains 372758 sequences. (Running on oeis4.)