login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161628
E.g.f.: A(x,y) = LambertW(x*y*exp(x))/(x*y*exp(x)), as a triangle of coefficients T(n,k) = [x^n*y^k/n! ] A(x,y), read by rows.
3
1, 0, -1, 0, -2, 3, 0, -3, 18, -16, 0, -4, 72, -192, 125, 0, -5, 240, -1440, 2500, -1296, 0, -6, 720, -8640, 30000, -38880, 16807, 0, -7, 2016, -45360, 280000, -680400, 705894, -262144, 0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969
OFFSET
0,5
COMMENTS
The sum of row r of the triangle is (-1)^r (see A244119). - Stanislav Sykora, Jun 21 2014
FORMULA
T(n,k) = (-1)^k*C(n,k)*(k+1)^(k-1)*k^(n-k).
E.g.f. satisfies: A(x,y) = exp(-x*y*exp(x)*A(x,y)).
E.g.f.: A(x,y) = Sum_{n>=0} (n+1)^(n-1) * (-x)^n*y^n*exp(n*x)/n!.
E.g.f.: A(x,y) = (1/x)*Series_Reversion[x*G(x,y)] where G(x,y) = exp(x*y*exp(x*G(x,y))) is the e.g.f. of A161552.
More generally, if G(x,y) = exp(p*x*y*exp(q*x)*G(x,y)),
where G(x,y)^m = Sum_{n>=0} g(n,m)*x^n/n!,
then g(n,m) = C(n,k)*p^k*q^(n-k) * m*(k+m)^(k-1) * k^(n-k)
and G(x,y) = LambertW(-p*x*y*exp(q*x))/(-p*x*y*exp(q*x)).
EXAMPLE
Triangle begins:
1;
0, -1;
0, -2, 3;
0, -3, 18, -16;
0, -4, 72, -192, 125;
0, -5, 240, -1440, 2500, -1296;
0, -6, 720, -8640, 30000, -38880, 16807;
0, -7, 2016, -45360, 280000, -680400, 705894, -262144;
0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969;
0, -9, 13824, -979776, 16128000, -102060000, 304946208, -462422016, 344373768, -100000000; ...
MAPLE
A161628 := (n, k) -> (-1)^k*binomial(n, k)*(k+1)^(k-1)*k^(n-k):
seq(seq(A161628(n, k), k=0..n), n=0..8); # Peter Luschny, Jan 29 2023
MATHEMATICA
Join[{1}, Table[(-1)^k*Binomial[n, k]*(k + 1)^(k - 1)*k^(n - k), {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 09 2017 *)
PROG
(PARI) {T(n, k)=(-1)^k*binomial(n, k)*(k+1)^(k-1)*k^(n-k)}
(PARI) {T(n, k)=local(A, LW=serreverse(x*exp(x+x*O(x^n)))); A=subst(LW/x, x, x*y*exp(x)); n!*polcoeff(polcoeff(A, n, x), k, y)}
(PARI) {T(n, k)=local(G=1+x); for(i=0, n, G=exp(x*y*exp(x*G+O(x^n)))); n!*polcoeff(polcoeff(serreverse(x*G)/x, n, x), k, y)}
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Jun 15 2009, Jun 16 2009, Jun 17 2009
STATUS
approved