Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 29 2023 10:53:30
%S 1,0,-1,0,-2,3,0,-3,18,-16,0,-4,72,-192,125,0,-5,240,-1440,2500,-1296,
%T 0,-6,720,-8640,30000,-38880,16807,0,-7,2016,-45360,280000,-680400,
%U 705894,-262144,0,-8,5376,-217728,2240000,-9072000,16941456,-14680064,4782969
%N E.g.f.: A(x,y) = LambertW(x*y*exp(x))/(x*y*exp(x)), as a triangle of coefficients T(n,k) = [x^n*y^k/n! ] A(x,y), read by rows.
%C The sum of row r of the triangle is (-1)^r (see A244119). - _Stanislav Sykora_, Jun 21 2014
%H G. C. Greubel, <a href="/A161628/b161628.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F T(n,k) = (-1)^k*C(n,k)*(k+1)^(k-1)*k^(n-k).
%F E.g.f. satisfies: A(x,y) = exp(-x*y*exp(x)*A(x,y)).
%F E.g.f.: A(x,y) = Sum_{n>=0} (n+1)^(n-1) * (-x)^n*y^n*exp(n*x)/n!.
%F E.g.f.: A(x,y) = (1/x)*Series_Reversion[x*G(x,y)] where G(x,y) = exp(x*y*exp(x*G(x,y))) is the e.g.f. of A161552.
%F More generally, if G(x,y) = exp(p*x*y*exp(q*x)*G(x,y)),
%F where G(x,y)^m = Sum_{n>=0} g(n,m)*x^n/n!,
%F then g(n,m) = C(n,k)*p^k*q^(n-k) * m*(k+m)^(k-1) * k^(n-k)
%F and G(x,y) = LambertW(-p*x*y*exp(q*x))/(-p*x*y*exp(q*x)).
%e Triangle begins:
%e 1;
%e 0, -1;
%e 0, -2, 3;
%e 0, -3, 18, -16;
%e 0, -4, 72, -192, 125;
%e 0, -5, 240, -1440, 2500, -1296;
%e 0, -6, 720, -8640, 30000, -38880, 16807;
%e 0, -7, 2016, -45360, 280000, -680400, 705894, -262144;
%e 0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969;
%e 0, -9, 13824, -979776, 16128000, -102060000, 304946208, -462422016, 344373768, -100000000; ...
%p A161628 := (n, k) -> (-1)^k*binomial(n, k)*(k+1)^(k-1)*k^(n-k):
%p seq(seq(A161628(n,k), k=0..n), n=0..8); # _Peter Luschny_, Jan 29 2023
%t Join[{1}, Table[(-1)^k*Binomial[n, k]*(k + 1)^(k - 1)*k^(n - k), {n, 1, 10}, {k, 0, n}]] // Flatten (* _G. C. Greubel_, Nov 09 2017 *)
%o (PARI) {T(n,k)=(-1)^k*binomial(n,k)*(k+1)^(k-1)*k^(n-k)}
%o (PARI) {T(n,k)=local(A,LW=serreverse(x*exp(x+x*O(x^n))));A=subst(LW/x,x,x*y*exp(x));n!*polcoeff(polcoeff(A,n,x),k,y)}
%o (PARI) {T(n,k)=local(G=1+x);for(i=0,n,G=exp(x*y*exp(x*G+O(x^n))));n!*polcoeff(polcoeff(serreverse(x*G)/x,n,x),k,y)}
%Y Cf. A161552, A244119, A273954.
%K sign,tabl
%O 0,5
%A _Paul D. Hanna_, Jun 15 2009, Jun 16 2009, Jun 17 2009