The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161631 E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)). 10
 1, 1, 2, 9, 52, 425, 4206, 50827, 713000, 11500785, 208833850, 4226139731, 94226705772, 2296472176297, 60727113115046, 1732020500240955, 52998549321251536, 1731977581804704737, 60205422811336194546 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..402 FORMULA E.g.f.: A(x) = 1 - LambertW(-x^2*exp(x))/x. E.g.f.: A(x) = 1 + Sum_{n>=1} x^(2*n-1) * n^(n-1) * exp(n*x) / n!. E.g.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where B(x) = 1 + x*exp(x)/B(x) = (1+sqrt(1+4*x*exp(x)))/2. a(n) = n*A125500(n-1) for n>0, where exp(x*A(x)) = e.g.f. of A125500. a(n) = n!*Sum_{k=0..n} C(n-k+1,k)/(n-k+1) * k^(n-k)/(n-k)!. If A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then a(n,m) = n!*Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * k^(n-k)/(n-k)!. a(n) ~ sqrt(1+LambertW(1/(2*exp(1/2)))) * n^(n-1) / (exp(n) * 2^(n+1/2) * (LambertW(1/(2*exp(1/2))))^(n+1)). - Vaclav Kotesovec, Jul 09 2013 EXAMPLE E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 425*x^5/5! +... exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 85*x^4/4! + 701*x^5/5! +... MATHEMATICA CoefficientList[Series[1-LambertW[-x^2*E^x]/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *) PROG (PARI) {a(n, m=1)=n!*sum(k=0, n, m*binomial(n-k+m, k)/(n-k+m)*k^(n-k)/(n-k)!)} CROSSREFS Cf. A125500, A364978, A364979. Sequence in context: A305304 A369090 A110322 * A121678 A124347 A360743 Adjacent sequences: A161628 A161629 A161630 * A161632 A161633 A161634 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 19:23 EDT 2024. Contains 372665 sequences. (Running on oeis4.)