login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161631
E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)).
11
1, 1, 2, 9, 52, 425, 4206, 50827, 713000, 11500785, 208833850, 4226139731, 94226705772, 2296472176297, 60727113115046, 1732020500240955, 52998549321251536, 1731977581804704737, 60205422811336194546
OFFSET
0,3
LINKS
FORMULA
E.g.f.: A(x) = 1 - LambertW(-x^2*exp(x))/x.
E.g.f.: A(x) = 1 + Sum_{n>=1} x^(2*n-1) * n^(n-1) * exp(n*x) / n!.
E.g.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where B(x) = 1 + x*exp(x)/B(x) = (1+sqrt(1+4*x*exp(x)))/2.
a(n) = n*A125500(n-1) for n>0, where exp(x*A(x)) = e.g.f. of A125500.
a(n) = n!*Sum_{k=0..n} C(n-k+1,k)/(n-k+1) * k^(n-k)/(n-k)!.
If A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then
a(n,m) = n!*Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * k^(n-k)/(n-k)!.
a(n) ~ sqrt(1+LambertW(1/(2*exp(1/2)))) * n^(n-1) / (exp(n) * 2^(n+1/2) * (LambertW(1/(2*exp(1/2))))^(n+1)). - Vaclav Kotesovec, Jul 09 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 425*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 85*x^4/4! + 701*x^5/5! +...
MATHEMATICA
CoefficientList[Series[1-LambertW[-x^2*E^x]/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
PROG
(PARI) {a(n, m=1)=n!*sum(k=0, n, m*binomial(n-k+m, k)/(n-k+m)*k^(n-k)/(n-k)!)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 18 2009
STATUS
approved