Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 02 2023 13:30:49
%S 1,1,2,9,52,425,4206,50827,713000,11500785,208833850,4226139731,
%T 94226705772,2296472176297,60727113115046,1732020500240955,
%U 52998549321251536,1731977581804704737,60205422811336194546
%N E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)).
%H Seiichi Manyama, <a href="/A161631/b161631.txt">Table of n, a(n) for n = 0..402</a>
%F E.g.f.: A(x) = 1 - LambertW(-x^2*exp(x))/x.
%F E.g.f.: A(x) = 1 + Sum_{n>=1} x^(2*n-1) * n^(n-1) * exp(n*x) / n!.
%F E.g.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where B(x) = 1 + x*exp(x)/B(x) = (1+sqrt(1+4*x*exp(x)))/2.
%F a(n) = n*A125500(n-1) for n>0, where exp(x*A(x)) = e.g.f. of A125500.
%F a(n) = n!*Sum_{k=0..n} C(n-k+1,k)/(n-k+1) * k^(n-k)/(n-k)!.
%F If A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then
%F a(n,m) = n!*Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * k^(n-k)/(n-k)!.
%F a(n) ~ sqrt(1+LambertW(1/(2*exp(1/2)))) * n^(n-1) / (exp(n) * 2^(n+1/2) * (LambertW(1/(2*exp(1/2))))^(n+1)). - _Vaclav Kotesovec_, Jul 09 2013
%e E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 425*x^5/5! +...
%e exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 85*x^4/4! + 701*x^5/5! +...
%t CoefficientList[Series[1-LambertW[-x^2*E^x]/x, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jul 09 2013 *)
%o (PARI) {a(n,m=1)=n!*sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*k^(n-k)/(n-k)!)}
%Y Cf. A125500, A364978, A364979.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jun 18 2009