login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161634
G.f. satisfies A(x) = 1/(1 - x*(1 + x*A(x))^2).
14
1, 1, 3, 8, 25, 81, 274, 953, 3389, 12265, 45025, 167256, 627540, 2374672, 9052447, 34731401, 134010573, 519683813, 2024370167, 7917605996, 31080085431, 122407860927, 483558273368, 1915535953655, 7607408410408, 30283240593756
OFFSET
0,3
COMMENTS
With offset 1, a(n) is the number of n-edge (unlabeled) ordered trees in which each nonroot nonleaf vertex has 2 or more children one of which is designated a favorite child. For example, a(3) = 3 counts the trees with edges {01,02,03}, {01,1(2),13}, {01,12,1(3)} with favorite children in parentheses, where the labels are merely for convenience. The generating function A(x) = 1 + x + x^2 + 3*x^3 + 8*x^4 + ... for these trees satisfies A(x) = 1 + x - x*A(x)^2 + x*A(x)^3. To see this, consider in addition the trees in which the root also has 2 or more children and a favorite child, and use the "symbolic method" of Flajolet and Sedgewick to get both generating functions. - David Callan, May 15 2022
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n+1,k)/(n+1) * C(2*k,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n then
a(n,m) = Sum_{k=0..n} C(n+m,k)*m/(n+m) * C(2*k,n-k).
...
G.f.: A(x) = 1 + x*A(x)*(1 + x*A(x))^2.
G.f.: A(x) = (1/x)*Series_Reversion[x/(1 + x + 2*x^2 + x^3)].
Recurrence: 2*(n+1)*(2*n+3)*(19*n+2)*a(n) = 2*(2*n+1)*(38*n^2 + 23*n + 9)*a(n-1) + 2*(n-1)*(304*n^2 + 184*n - 99)*a(n-2) + 23*(n-2)*(n-1)*(19*n+21)*a(n-3). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 1/12*(8 + (10088 - 456*sqrt(57))^(1/3) + 2*(1261 + 57*sqrt(57))^(1/3)) = 4.219136248741586519... is the root of the equation -23 - 32*d - 8*d^2 + 4*d^3 = 0 and c = sqrt((893 + 2*(19*(4479877 - 238353*sqrt(57)))^(1/3) + 2*(19*(4479877 + 238353*sqrt(57)))^(1/3))/912) = 1.6945853695750331225605382455867539183676739... - Vaclav Kotesovec, Sep 18 2013, updated Nov 13 2023
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 25*x^4 + 81*x^5 + 274*x^6 +...
(1 + x*A(x))^2 = 1 + 2*x + 3*x^2 + 8*x^3 + 23*x^4 + 72*x^5 + 237*x^6 +...
MATHEMATICA
Table[Sum[Binomial[n+1, k]/(n+1)*Binomial[2*k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 18 2013 *)
PROG
(PARI) a(n, m=1)=sum(k=0, n, binomial(n+m, k)*m/(n+m)*binomial(2*k, n-k))
CROSSREFS
Sequence in context: A180718 A318226 A197159 * A293385 A258466 A216640
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 18 2009
STATUS
approved