login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293385 G.f. A(x) satisfies: A(x) = Sum_{-oo..+oo} (x - A(x)^n)^(n+1). 2
1, -1, 3, -8, 25, -82, 279, -974, 3471, -12582, 46258, -172092, 646667, -2450920, 9358703, -35970203, 139053789, -540332534, 2109336474, -8268739720, 32536551783, -128468095943, 508841232024, -2021249839308, 8050245467461, -32141168565845, 128617254147007, -515764830465583, 2072316922422961, -8341724250355787, 33635614440282961, -135843921900168936 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Compare g.f. to the identities:

(1) Sum_{-oo..+oo} (x - q^n)^(n-1) = 0,

(2) Sum_{-oo..+oo} (x - q^n)^(n+1) = x * Sum_{-oo..+oo} (x - q^n)^n,

(3) Sum_{-oo..+oo} q^n * (x - q^n)^n = 0.

Sum converges at x = r = -0.23583204404501474769372258323... with A(r) = -0.549249... and diverges for x < r.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..600 (terms 1..280 from Vaclav Kotesovec)

FORMULA

G.f. A(x) satisfies:

(1) A(x) = Sum_{-oo..+oo} (x - A(x)^n)^(n+1).

(2) A(x) = x * Sum_{-oo..+oo} (x - A(x)^n)^n.

(3) A(x) = x/(1-x) + Sum_{n>=1} (-1)^n * x * A(x)^(n^2) * (2 - x*A(x)^n)/(1 - x*A(x)^n)^(n+1).

(4) A(x) = Sum_{n>=1} x^n * Sum_{k>=0} A293600(n,k) * A(x)^(k*(n+k-1)), where A293600(n,k) = [z^k] (1-z)/(1+z)^n.

(5) A(x) = P(x) + Q(x), where

P(x) = Sum_{n>=0} (x - A(x)^n)^(n+1),

Q(x) = Sum_{n>=1} (-1)^(n-1) * A(x)^(n*(n-1)) / (1 - x*A(x)^n)^(n-1).

a(n) ~ -(-1)^n * c * d^n / n^(3/2), where d = 4.2403058670395262369476988786... and c = 0.19755290815424088971... - Vaclav Kotesovec, Oct 20 2017

EXAMPLE

G.f.: A(x) = x - x^2 + 3*x^3 - 8*x^4 + 25*x^5 - 82*x^6 + 279*x^7 - 974*x^8 + 3471*x^9 - 12582*x^10 + 46258*x^11 - 172092*x^12 + 646667*x^13 - 2450920*x^14 + 9358703*x^15 - 35970203*x^16 + 139053789*x^17 - 540332534*x^18 + 2109336474*x^19 - 8268739720*x^20 +...

such that

A(x) = Sum_{-oo..+oo} (x - A(x)^n)^(n+1).

Let A = A(x), then A = P + Q where

P = (x - 1) + (x - A)^2 + (x - A^2)^3 + (x - A^3)^4 + (x - A^4)^5 + (x - A^5)^6 + (x - A^6)^7 +...+ (x - A^n)^(n+1) +...

Q = 1 - A^2/(1 - x*A^2) + A^6/(1 - x*A^3)^2 - A^12/(1 - x*A^4)^3 + A^20/(1 - x*A^5)^4 - A^30/(1 - x*A^6)^5 +...+ (-1)^(n-1)*A^(n*(n-1))/(1 - x*A^n)^(n-1) +...

More explicitly,

P = -1 + x + x^3 - x^4 + 4*x^5 - 12*x^6 + 41*x^7 - 142*x^8 + 512*x^9 - 1902*x^10 + 7227*x^11 - 27894*x^12 + 108862*x^13 - 428339*x^14 + 1695921*x^15 - 6747557*x^16 + 26951825*x^17 - 107999225*x^18 + 433924759*x^19 - 1747421503*x^20 + 7050821323*x^21 +...

Q = 1 - x^2 + 2*x^3 - 7*x^4 + 21*x^5 - 70*x^6 + 238*x^7 - 832*x^8 + 2959*x^9 - 10680*x^10 + 39031*x^11 - 144198*x^12 + 537805*x^13 - 2022581*x^14 + 7662782*x^15 - 29222646*x^16 + 112101964*x^17 - 432333309*x^18 + 1675411715*x^19 - 6521318217*x^20 + 25485730460*x^21 +...

where g.f. A(x) = P + Q.

Let A = A(x), then we can also write

A(x) = x*(1 - 2*A + 2*A^4 - 2*A^9 + 2*A^16 - 2*A^25 +...)

+ x^2*(1 - 3*A^2 + 5*A^6 - 7*A^12 + 9*A^20 - 11*A^30 +...)

+ x^3*(1 - 4*A^3 + 9*A^8 - 16*A^15 + 25*A^24 - 36*A^35 +...)

+ x^4*(1 - 5*A^4 + 14*A^10 - 30*A^18 + 55*A^28 - 91*A^40 +...)

+ x^5*(1 - 6*A^5 + 20*A^12 - 50*A^21 + 105*A^32 - 196*A^45 +...)

+ x^6*(1 - 7*A^6 + 27*A^14 - 182*A^24 + 378*A^36 - 714*A^50 +...)

+...

where coefficient of x^n * A^(k*(n+k-1)) = A293600(n,k) = [z^k] (1-z)/(1+z)^n.

PROG

(PARI) {a(n) = my(A=x-x^2, P=-1, Q=1, Ox=x*O(x^n)); for(i=0, n,

P = sum(m=0, n+1, (x - A^m +Ox)^(m+1) );

Q = sum(m=1, sqrtint(n+9), (-1)^(m-1) * A^(m*(m-1)) / (1 - x*A^m +Ox)^(m-1) );

A = P + Q; ); polcoeff(A, n)}

for(n=1, 40, print1(a(n), ", "))

(PARI) { A293600(n, k) = my(z=x+x*O(x^k)); polcoeff( (1-z)/(1+z)^n, k) }

{ a(n) = my(A=x-x^2 +x*O(x^n)); for(i=0, n,

A = sum(m=1, n, x^m * sum(k=0, n\m+1, A293600(m, k) * A^(k*(m+k-1)) )); );

polcoeff(A, n)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A293600.

Sequence in context: A318226 A197159 A161634 * A258466 A216640 A148794

Adjacent sequences:  A293382 A293383 A293384 * A293386 A293387 A293388

KEYWORD

sign

AUTHOR

Paul D. Hanna, Oct 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 05:36 EST 2019. Contains 329978 sequences. (Running on oeis4.)