login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293385
G.f. A(x) satisfies: A(x) = Sum_{-oo..+oo} (x - A(x)^n)^(n+1).
2
1, -1, 3, -8, 25, -82, 279, -974, 3471, -12582, 46258, -172092, 646667, -2450920, 9358703, -35970203, 139053789, -540332534, 2109336474, -8268739720, 32536551783, -128468095943, 508841232024, -2021249839308, 8050245467461, -32141168565845, 128617254147007, -515764830465583, 2072316922422961, -8341724250355787, 33635614440282961, -135843921900168936
OFFSET
1,3
COMMENTS
Compare g.f. to the identities:
(1) Sum_{-oo..+oo} (x - q^n)^(n-1) = 0,
(2) Sum_{-oo..+oo} (x - q^n)^(n+1) = x * Sum_{-oo..+oo} (x - q^n)^n,
(3) Sum_{-oo..+oo} q^n * (x - q^n)^n = 0.
Sum converges at x = r = -0.23583204404501474769372258323... with A(r) = -0.549249... and diverges for |x| > |r|.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..600 (terms 1..280 from Vaclav Kotesovec)
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{-oo..+oo} (x - A(x)^n)^(n+1).
(2) A(x) = x * Sum_{-oo..+oo} (x - A(x)^n)^n.
(3) A(x) = x/(1-x) + Sum_{n>=1} (-1)^n * x * A(x)^(n^2) * (2 - x*A(x)^n)/(1 - x*A(x)^n)^(n+1).
(4) A(x) = Sum_{n>=1} x^n * Sum_{k>=0} A293600(n,k) * A(x)^(k*(n+k-1)), where A293600(n,k) = [z^k] (1-z)/(1+z)^n.
(5) A(x) = P(x) + Q(x), where
P(x) = Sum_{n>=0} (x - A(x)^n)^(n+1),
Q(x) = Sum_{n>=1} (-1)^(n-1) * A(x)^(n*(n-1)) / (1 - x*A(x)^n)^(n-1).
a(n) ~ -(-1)^n * c * d^n / n^(3/2), where d = 4.2403058670395262369476988786... and c = 0.19755290815424088971... - Vaclav Kotesovec, Oct 20 2017
EXAMPLE
G.f.: A(x) = x - x^2 + 3*x^3 - 8*x^4 + 25*x^5 - 82*x^6 + 279*x^7 - 974*x^8 + 3471*x^9 - 12582*x^10 + 46258*x^11 - 172092*x^12 + 646667*x^13 - 2450920*x^14 + 9358703*x^15 - 35970203*x^16 + 139053789*x^17 - 540332534*x^18 + 2109336474*x^19 - 8268739720*x^20 +...
such that
A(x) = Sum_{-oo..+oo} (x - A(x)^n)^(n+1).
Let A = A(x), then A = P + Q where
P = (x - 1) + (x - A)^2 + (x - A^2)^3 + (x - A^3)^4 + (x - A^4)^5 + (x - A^5)^6 + (x - A^6)^7 +...+ (x - A^n)^(n+1) +...
Q = 1 - A^2/(1 - x*A^2) + A^6/(1 - x*A^3)^2 - A^12/(1 - x*A^4)^3 + A^20/(1 - x*A^5)^4 - A^30/(1 - x*A^6)^5 +...+ (-1)^(n-1)*A^(n*(n-1))/(1 - x*A^n)^(n-1) +...
More explicitly,
P = -1 + x + x^3 - x^4 + 4*x^5 - 12*x^6 + 41*x^7 - 142*x^8 + 512*x^9 - 1902*x^10 + 7227*x^11 - 27894*x^12 + 108862*x^13 - 428339*x^14 + 1695921*x^15 - 6747557*x^16 + 26951825*x^17 - 107999225*x^18 + 433924759*x^19 - 1747421503*x^20 + 7050821323*x^21 +...
Q = 1 - x^2 + 2*x^3 - 7*x^4 + 21*x^5 - 70*x^6 + 238*x^7 - 832*x^8 + 2959*x^9 - 10680*x^10 + 39031*x^11 - 144198*x^12 + 537805*x^13 - 2022581*x^14 + 7662782*x^15 - 29222646*x^16 + 112101964*x^17 - 432333309*x^18 + 1675411715*x^19 - 6521318217*x^20 + 25485730460*x^21 +...
where g.f. A(x) = P + Q.
Let A = A(x), then we can also write
A(x) = x*(1 - 2*A + 2*A^4 - 2*A^9 + 2*A^16 - 2*A^25 +...)
+ x^2*(1 - 3*A^2 + 5*A^6 - 7*A^12 + 9*A^20 - 11*A^30 +...)
+ x^3*(1 - 4*A^3 + 9*A^8 - 16*A^15 + 25*A^24 - 36*A^35 +...)
+ x^4*(1 - 5*A^4 + 14*A^10 - 30*A^18 + 55*A^28 - 91*A^40 +...)
+ x^5*(1 - 6*A^5 + 20*A^12 - 50*A^21 + 105*A^32 - 196*A^45 +...)
+ x^6*(1 - 7*A^6 + 27*A^14 - 182*A^24 + 378*A^36 - 714*A^50 +...)
+...
where coefficient of x^n * A^(k*(n+k-1)) = A293600(n,k) = [z^k] (1-z)/(1+z)^n.
PROG
(PARI) {a(n) = my(A=x-x^2, P=-1, Q=1, Ox=x*O(x^n)); for(i=0, n,
P = sum(m=0, n+1, (x - A^m +Ox)^(m+1) );
Q = sum(m=1, sqrtint(n+9), (-1)^(m-1) * A^(m*(m-1)) / (1 - x*A^m +Ox)^(m-1) );
A = P + Q; ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
(PARI) { A293600(n, k) = my(z=x+x*O(x^k)); polcoeff( (1-z)/(1+z)^n, k) }
{ a(n) = my(A=x-x^2 +x*O(x^n)); for(i=0, n,
A = sum(m=1, n, x^m * sum(k=0, n\m+1, A293600(m, k) * A^(k*(m+k-1)) )); );
polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A293600.
Sequence in context: A318226 A197159 A161634 * A258466 A216640 A148794
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 16 2017
STATUS
approved