The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305304 Expansion of e.g.f. 1/(1 + LambertW(-x/(1 + x))). 1
 1, 1, 2, 9, 52, 405, 3786, 42301, 542984, 7924041, 129110230, 2327399481, 45940938924, 986045445853, 22856850513602, 569163515043285, 15150885843083536, 429364157810169105, 12905794670246364078, 410108007771441394129, 13736898888997174964660, 483740530150449507164901, 17866185834825657429606682 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Inverse Lah transform of A000312. LINKS N. J. A. Sloane, Transforms FORMULA a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*k^k*n!/k!. a(n) ~ n^n * (exp(1) - 1)^(n - 1/2) / exp(n - 1/2). - Vaclav Kotesovec, Aug 18 2018 MAPLE a:=series(1/(1+LambertW(-x/(1+x))), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019 MATHEMATICA nmax = 22; CoefficientList[Series[1/(1 + LambertW[-x/(1 + x)]), {x, 0, nmax}], x] Range[0, nmax]! Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] k^k n!/k!, {k, n}], {n, 22}]] CROSSREFS Cf. A000312, A052871, A060356, A305276. Sequence in context: A248440 A330200 A143922 * A110322 A161631 A121678 Adjacent sequences:  A305301 A305302 A305303 * A305305 A305306 A305307 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)