login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330200
Expansion of e.g.f. Product_{k>=1} exp(x^k) / (1 - x^k).
2
1, 2, 9, 52, 389, 3366, 34477, 392624, 5035977, 70674634, 1085687921, 17982460332, 321298513549, 6121639481582, 124336400707989, 2674237637496616, 60799325536137617, 1454405117742700434, 36556297436871331417, 961899014831786663204
OFFSET
0,2
FORMULA
E.g.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = e.g.f. of A000522.
E.g.f.: exp(Sum_{k>=1} (sigma(k) / k + 1) * x^k), where sigma = A000203.
E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(phi(k)/k + 1), where phi = A000010.
a(0) = 1; a(n) = (n - 1)! * Sum_{k=1..n} (sigma(k) + k) * a(n-k) / (n - k)!.
a(n) = Sum_{k=0..n} binomial(n,k) * A000262(k) * A053529(n-k).
a(n) ~ sqrt(1/Pi + Pi/6) * n^(n - 1/2) / (2 * exp(n + 1/2 - sqrt(2*(6 + Pi^2)*n/3))). - Vaclav Kotesovec, Aug 09 2021
MATHEMATICA
nmax = 19; CoefficientList[Series[Product[Exp[x^k]/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = (n - 1)! Sum[(DivisorSigma[1, k] + k) a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 19}]
Table[n!*Sum[LaguerreL[k, -1, -1]*PartitionsP[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 09 2021 *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 05 2019
STATUS
approved