The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330200 Expansion of e.g.f. Product_{k>=1} exp(x^k) / (1 - x^k). 2
 1, 2, 9, 52, 389, 3366, 34477, 392624, 5035977, 70674634, 1085687921, 17982460332, 321298513549, 6121639481582, 124336400707989, 2674237637496616, 60799325536137617, 1454405117742700434, 36556297436871331417, 961899014831786663204 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA E.g.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = e.g.f. of A000522. E.g.f.: exp(Sum_{k>=1} (sigma(k) / k + 1) * x^k), where sigma = A000203. E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(phi(k)/k + 1), where phi = A000010. a(0) = 1; a(n) = (n - 1)! * Sum_{k=1..n} (sigma(k) + k) * a(n-k) / (n - k)!. a(n) = Sum_{k=0..n} binomial(n,k) * A000262(k) * A053529(n-k). a(n) ~ sqrt(1/Pi + Pi/6) * n^(n - 1/2) / (2 * exp(n + 1/2 - sqrt(2*(6 + Pi^2)*n/3))). - Vaclav Kotesovec, Aug 09 2021 MATHEMATICA nmax = 19; CoefficientList[Series[Product[Exp[x^k]/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = (n - 1)! Sum[(DivisorSigma[1, k] + k) a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 19}] Table[n!*Sum[LaguerreL[k, -1, -1]*PartitionsP[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 09 2021 *) CROSSREFS Cf. A000010, A000203, A000262, A000522, A053529, A330201, A346964. Sequence in context: A143508 A052882 A248440 * A143922 A305304 A110322 Adjacent sequences:  A330197 A330198 A330199 * A330201 A330202 A330203 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Dec 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:06 EST 2021. Contains 349565 sequences. (Running on oeis4.)