login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330199 Expansion of e.g.f. Product_{k>=1} exp(1 - exp(x^k)). 6
1, -1, -2, 1, 1, 98, -39, 3225, 1226, 6459, 12473, 821830, -214739887, -201448561, -8997850614, -514986723363, -1310942141971, -26465356716946, -931753364233567, -1858534483400559, 167210272584038942, -7112146717031426801, 312288595642509829797 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..450

FORMULA

E.g.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = e.g.f. of complementary Bell numbers (A000587).

E.g.f.: exp(-Sum_{j>=1} Sum_{i>=1} x^(i*j) / i!).

a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * A057625(k) * a(n-k).

MATHEMATICA

nmax = 22; CoefficientList[Series[Product[Exp[1 - Exp[x^k]], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n - 1, k - 1] k! DivisorSum[k, 1/#! &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

CROSSREFS

Cf. A000587, A057625, A209903.

Sequence in context: A173890 A159767 A169658 * A336810 A178473 A164810

Adjacent sequences:  A330196 A330197 A330198 * A330200 A330201 A330202

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Dec 05 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)