login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209903
E.g.f.: Product_{n>=1} B(x^n) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
11
1, 1, 4, 17, 111, 752, 6893, 64171, 733540, 8751579, 119847295, 1716294780, 27583937857, 460405876777, 8428298492136, 160944930254405, 3309210789416387, 70814345769448444, 1617322515279759301, 38322855872232745163, 960820910852189283072
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp( Sum_{n>=1} x^n/n! / (1-x^n) ).
E.g.f.: exp( Sum_{n>=1} A057625(n)*x^n/n! ).
E.g.f.: exp( Sum_{n>=1} exp(x^n)-1 ).
a(n) = (n-1)! * Sum_{k=1..n} k * (Sum_{d|k} 1/d!) * a(n-k)/(n-k)! for n > 0. - Seiichi Manyama, Jul 02 2021
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 111*x^4/4! + 752*x^5/5! +...
Let B(x) = exp(exp(x)-1) be the e.g.f. of Bell numbers:
B(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 15*x^4/4! + 52*x^5/5! + 203*x^6/6! +...
then the e.g.f. of this sequence equals the infinite product:
A(x) = B(x)*B(x^2)*B(x^3)*B(x^4)*B(x^5)*B(x^6)...
The logarithm of the e.g.f. A(x) begins:
log(A(x)) = x + 3*x^2/2! + 7*x^3/3! + 37*x^4/4! + 121*x^5/5! + 1201*x^6/6! +...+ A057625(n)*x^n/n! +...
PROG
(PARI) {a(n)=local(Bell=exp(exp(x+x*O(x^n))-1)); n!*polcoeff(prod(m=1, n, subst(Bell, x, x^m+x*O(x^n))), n)}
(PARI) {a(n)=n!*polcoeff(exp(sum(m=1, n, x^m/m!/(1-x^m+x*O(x^n)))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sumdiv(k, d, 1/d!)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Jul 02 2021
CROSSREFS
Cf. A057625 (log), A209902, A330199.
Sequence in context: A232211 A122940 A077386 * A330514 A330535 A004140
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 15 2012
STATUS
approved