login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: Product_{n>=1} B(x^n) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
11

%I #20 Oct 26 2024 04:21:42

%S 1,1,4,17,111,752,6893,64171,733540,8751579,119847295,1716294780,

%T 27583937857,460405876777,8428298492136,160944930254405,

%U 3309210789416387,70814345769448444,1617322515279759301,38322855872232745163,960820910852189283072

%N E.g.f.: Product_{n>=1} B(x^n) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.

%H Seiichi Manyama, <a href="/A209903/b209903.txt">Table of n, a(n) for n = 0..443</a>

%F E.g.f.: exp( Sum_{n>=1} x^n/n! / (1-x^n) ).

%F E.g.f.: exp( Sum_{n>=1} A057625(n)*x^n/n! ).

%F E.g.f.: exp( Sum_{n>=1} exp(x^n)-1 ).

%F a(n) = (n-1)! * Sum_{k=1..n} k * (Sum_{d|k} 1/d!) * a(n-k)/(n-k)! for n > 0. - _Seiichi Manyama_, Jul 02 2021

%e E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 111*x^4/4! + 752*x^5/5! +...

%e Let B(x) = exp(exp(x)-1) be the e.g.f. of Bell numbers:

%e B(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 15*x^4/4! + 52*x^5/5! + 203*x^6/6! +...

%e then the e.g.f. of this sequence equals the infinite product:

%e A(x) = B(x)*B(x^2)*B(x^3)*B(x^4)*B(x^5)*B(x^6)...

%e The logarithm of the e.g.f. A(x) begins:

%e log(A(x)) = x + 3*x^2/2! + 7*x^3/3! + 37*x^4/4! + 121*x^5/5! + 1201*x^6/6! +...+ A057625(n)*x^n/n! +...

%o (PARI) {a(n)=local(Bell=exp(exp(x+x*O(x^n))-1));n!*polcoeff(prod(m=1,n,subst(Bell,x,x^m+x*O(x^n))),n)}

%o (PARI) {a(n)=n!*polcoeff(exp(sum(m=1,n,x^m/m!/(1-x^m+x*O(x^n)))),n)}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sumdiv(k, d, 1/d!)*a(n-k)/(n-k)!)); \\ _Seiichi Manyama_, Jul 02 2021

%Y Cf. A057625 (log), A209902, A330199.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Mar 15 2012