login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330199 Expansion of e.g.f. Product_{k>=1} exp(1 - exp(x^k)). 6

%I #8 Jul 03 2021 01:37:13

%S 1,-1,-2,1,1,98,-39,3225,1226,6459,12473,821830,-214739887,-201448561,

%T -8997850614,-514986723363,-1310942141971,-26465356716946,

%U -931753364233567,-1858534483400559,167210272584038942,-7112146717031426801,312288595642509829797

%N Expansion of e.g.f. Product_{k>=1} exp(1 - exp(x^k)).

%H Seiichi Manyama, <a href="/A330199/b330199.txt">Table of n, a(n) for n = 0..450</a>

%F E.g.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = e.g.f. of complementary Bell numbers (A000587).

%F E.g.f.: exp(-Sum_{j>=1} Sum_{i>=1} x^(i*j) / i!).

%F a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * A057625(k) * a(n-k).

%t nmax = 22; CoefficientList[Series[Product[Exp[1 - Exp[x^k]], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n - 1, k - 1] k! DivisorSum[k, 1/#! &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

%Y Cf. A000587, A057625, A209903.

%K sign

%O 0,3

%A _Ilya Gutkovskiy_, Dec 05 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 09:32 EDT 2024. Contains 375786 sequences. (Running on oeis4.)