OFFSET
0,6
COMMENTS
Alternating row sums of Stirling2 triangle A048993.
Related to the matrix-exponential of the Pascal-matrix, see A000110 and A011971. - Gottfried Helms, Apr 08 2007
Closely linked to A000110 and especially the contribution there of Jonathan R. Love (japanada11(AT)yahoo.ca), Feb 22 2007, by offering what is a complementary finding.
Number of set partitions of 1..n with an even number of parts, minus the number of such partitions with an odd number of parts. - Franklin T. Adams-Watters, May 04 2010
After -2, the smallest prime is a(36) = -1454252568471818731501051, no others through a(100). What is the first prime >0 in the sequence? - Jonathan Vos Post, Feb 02 2011
a(723) ~ 1.9*10^1265 is almost certainly prime. - D. S. McNeil, Feb 02 2011
Stirling transform of a(n) = [1, -1, 0, 1, 1, ...] is A033999(n) = [1, -1, 1, -1, 1, ...]. - Michael Somos, Mar 28 2012
Negated coefficients in the asymptotic expansion: A005165(n)/n! ~ 1 - 1/n + 1/n^2 + 0/n^3 - 1/n^4 - 1/n^5 + 2/n^6 + 9/n^7 + 9/n^8 - 50/n^9 - 267/n^10 - 413/n^11 + O(1/n^12), starting from the O(1/n) term. - Vladimir Reshetnikov, Nov 09 2016
Named after Venkata Ramamohana Rao Uppuluri and John A. Carpenter of the Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. They are called "Rényi numbers" by Fekete (1999), after the Hungarian mathematician Alfréd Rényi (1921-1970). - Amiram Eldar, Mar 11 2022
REFERENCES
N. A. Kolokolnikova, Relations between sums of certain special numbers (Russian), in Asymptotic and enumeration problems of combinatorial analysis, pp. 117-124, Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976.
Alfréd Rényi, Új modszerek es eredmenyek a kombinatorikus analfzisben. I. MTA III Oszt. Ivozl., Vol. 16 (1966), pp. 7-105.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. V. Subbarao and A. Verma, Some remarks on a product expansion. An unexplored partition function, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999), pp. 267-283, Kluwer, Dordrecht, 2001.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..595 (first 101 terms from T. D. Noe)
M. Aguiar and A. Lauve, The characteristic polynomial of the Adams operators on graded connected Hopf algebras, 2014. See Example 31. - N. J. A. Sloane, May 24 2014
W. Asakly, A. Blecher, C. Brennan, A. Knopfmacher, T. Mansour, and S. Wagner, Set partition asymptotics and a conjecture of Gould and Quaintance, Journal of Mathematical Analysis and Applications, Volume 416, Issue 2 (15 August 2014), Pages 672-682.
Tewodros Amdeberhan, Valerio de Angelis and Victor H. Moll, Complementary Bell numbers: arithmetical properties and Wilf's conjecture.
S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences , J. Int. Seq., Vol. 13 (2010), Article 10.9.7.
R. E. Beard, On the Coefficients in the Expansion of e^(e^t) and e^(-e^t), J. Institute of Actuaries, Vol. 76 (1950), pp. 152-163. [Annotated scanned copy]
Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv:1505.03474 [cs.FL], 2015.
Valerio De Angelis and Dominic Marcello, Wilf's Conjecture, The American Mathematical Monthly, Vol. 123, No. 6 (2016), pp. 557-573.
S. de Wannemacker, T. Laffey and R. Osburn, On a conjecture of Wilf, arXiv:math/0608085 [math.NT], 2006-2007.
Branko Dragovich, On Summation of p-Adic Series, arXiv:1702.02569 [math.NT], 2017.
Branko Dragovich, Andrei Yu. Khrennikov, and Natasa Z. Misic, Summation of p-Adic Functional Series in Integer Points, arXiv:1508.05079, 2015
B. Dragovich and N. Z. Misic, p-Adic invariant summation of some p-adic functional series, P-Adic Numbers, Ultrametric Analysis, and Applications, Volume 6, Issue 4 (October 2014), pp. 275-283.
Antal E. Fekete, Apropos Bell and Stirling Numbers, Crux Mathematicorum, Vol. 25, No. 5 (1999), pp. 274-281.
B. Harris and L. Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Ill. J. Math., Vol. 12 (1968), pp. 264-277.
M. Klazar, Counting even and odd partitions, Amer. Math. Monthly, Vol. 110, No. 6 (2003), pp. 527-532.
M. Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87.
A. Knopfmacher and M. E. Mays, Graph compositions I: Basic enumerations, Integers, Vol. 1 (2001), Article A4. (See the first two columns of the table on p. 9.)
Vaclav Kotesovec, Plot of |a(n)/n!|^(1/n) / |exp(1/W(-n))/W(-n)| for n = 1..40000, where W is the LambertW function.
Peter J. Larcombe, Jack Sutton, and James Stanton, A note on the constant 1/e, Palest. J. Math. (2023) Vol. 12, No. 2, 609-619. See p. 617.
J. W. Layman and C. L. Prather, Generalized Bell numbers and zeros of successive derivatives of an entire function, Journal of Mathematical Analysis and Applications, Volume 96, Issue 1 (15 October 1983), Pages 42-51.
Toufik Mansour and Mark Shattuck, Counting subword patterns in permutations arising as flattened partitions of sets, Appl. Anal. Disc. Math. (2022), OnLine-First (00):9-9.
T. Mansour, M. Shattuck and D. G. L. Wang, Recurrence relations for patterns of type (2, 1) in flattened permutations, arXiv preprint arXiv:1306.3355 [math.CO], 2013.
S. Ramanujan, Notebook entry.
V. R. Rao Uppuluri and J. A. Carpenter, Numbers generated by the function exp(1-e^x), Fib. Quart., Vol. 7, No. 4 (1969), pp. 437-448.
Frank Ruskey and Jennifer Woodcock, The Rand and block distances of pairs of set partitions, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, Counting and computing the Rand and block distances of pairs of set partitions, Journal of Discrete Algorithms, Volume 16 (October 2012), Pages 236-248. [N. J. A. Sloane, Oct 03 2012]
M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq., Vol. 14 (2011), Article 11.9.7.
D. Subedi, Complementary Bell Numbers and p-adic Series, J. Int. Seq., Vol. 17 (2014), Article 14.3.1.
A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.
Eric Weisstein's World of Mathematics, Complementary Bell Number.
D. Wuilquin, Letters to N. J. A. Sloane, August 1984.
Yifan Yang, On a multiplicative partition function, Electron. J. Combin., Vol. 8, No. 1 (2001), Research Paper 19.
FORMULA
a(n) = e*Sum_{k>=0} (-1)^k*k^n/k!. - Benoit Cloitre, Jan 28 2003
E.g.f.: exp(1 - e^x).
a(n) = Sum_{k=0..n} (-1)^k S2(n, k), where S2(i, j) are the Stirling numbers of second kind A008277.
G.f.: (x/(1-x))*A(x/(1-x)) = 1 - A(x); the binomial transform equals the negative of the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
With different signs: g.f.: Sum_{k>=0} x^k/Product_{L=1..k} (1 + L*x).
Recurrence: a(n) = -Sum_{i=0..n-1} a(i)*C(n-1, i). - Ralf Stephan, Feb 24 2005
Let P be the lower-triangular Pascal-matrix, PE = exp(P-I) a matrix-exponential in exact integer arithmetic (or PE = lim exp(P)/exp(1) as limit of the exponential); then a(n) = PE^-1 [n,1]. - Gottfried Helms, Apr 08 2007
Take the series 0^n/0! - 1^n/1! + 2^n/2! - 3^n/3! + 4^n/4! + ... If n=0 then the result will be 1/e, where e = 2.718281828... If n=1, the result will be -1/e. If n=2, the result will be 0 (i.e., 0/e). As we continue for higher natural number values of n sequence for the Roa Uppuluri-Carpenter numbers is generated in the numerator, i.e., 1/e, -1/e, 0/e, 1/e, 1/e, -2/e, -9/e, -9/e, 50/e, 267/e, ... . - Peter Collins (pcolins(AT)eircom.net), Jun 04 2007
The sequence (-1)^n*a(n), with general term Sum_{k=0..n} (-1)^(n-k)*S2(n, k), has e.g.f. exp(1-exp(-x)). It also has Hankel transform (-1)^C(n+1,2)*A000178(n) and binomial transform A109747. - Paul Barry, Mar 31 2008
G.f.: 1 / (1 + x / (1 - x / (1 + x / (1 - 2*x / (1 + x / (1 - 3*x / (1 + x / ...))))))). - Michael Somos, May 12 2012
From Sergei N. Gladkovskii, Sep 28 2012 to Feb 07 2014: (Start)
Continued fractions:
G.f.: -1/U(0) where U(k) = x*k - 1 - x + x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)+x) where U(k) = 1 + x - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1+x/G(0) where G(k) = x*k - 1 + x^2*(k+1)/G(k+1).
G.f.: (1 - G(0))/(x+1) where G(k) = 1 - 1/(1-k*x)/(1-x/(x+1/G(k+1) )).
G.f.: 1 + x/(G(0)-x) where G(k) = x*k + 2*x - 1 - x*(x*k+x-1)/G(k+1).
G.f.: G(0)/(1+x), where G(k) = 1-x^2*(k+1)/(x^2*(k+1)+(x*k-1-x)*(x*k-1)/G(k+1)).
(End)
a(n) = B_n(-1), where B_n(x) is n-th Bell polynomial. - Vladimir Reshetnikov, Oct 20 2015
From Mélika Tebni, May 20 2022: (Start)
a(n) = Sum_{k=0..n} (-1)^k*Bell(k)*A129062(n, k).
a(n) = Sum_{k=0..n} (-1)^k*k!*A130191(n, k). (End)
EXAMPLE
G.f. = 1 - x + x^3 + x^4 - 2*x^5 - 9*x^6 - 9*x^7 + 50*x^8 + 267*x^9 + 413*x^10 - ...
MAPLE
b:= proc(n, t) option remember; `if`(n=0, 1-2*t,
add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Jun 28 2016
MATHEMATICA
Table[ -1 * Sum[ (-1)^( k + 1) StirlingS2[ n, k ], {k, 0, n} ], {n, 0, 40} ]
With[{nn=30}, CoefficientList[Series[Exp[1-Exp[x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 04 2011 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 1 - Exp[x]], {x, 0, n}]]; (* Michael Somos, May 27 2014 *)
a[ n_] := If[ n < 0, 0, With[{m = n + 1}, SeriesCoefficient[ Series[ Nest[ x Factor[ 1 - # /. x -> x / (1 - x)] &, 0, m], {x, 0, m}], {x, 0, m}]]]; (* Michael Somos, May 27 2014 *)
Table[BellB[n, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
b[1] = 1; k = 1; Flatten[{1, Table[Do[j = k; k -= b[m]; b[m] = j; , {m, 1, n-1}]; b[n] = k; k*(-1)^n, {n, 1, 40}]}] (* Vaclav Kotesovec, Sep 09 2019 *)
PROG
(Sage) expnums(26, -1) # Zerinvary Lajos, May 15 2009
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - exp( x + x * O(x^n))), n))}; /* Michael Somos, Mar 14 2011 */
(PARI) {a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = x - x * subst(A, x, x / (1 - x))); polcoeff( A, n))}; /* Michael Somos, Mar 14 2011 */
(PARI) Vec(serlaplace(exp(1 - exp(x+O(x^99))))) /* Joerg Arndt, Apr 01 2011 */
(PARI) a(n)=round(exp(1)*suminf(k=0, (-1)^k*k^n/k!))
vector(20, n, a(n-1)) \\ Derek Orr, Sep 19 2014 -- a direct approach
(PARI) x='x+O('x^66); Vec(serlaplace(exp(1 - exp(x)))) \\ Michel Marcus, Sep 19 2014
(Python) # The objective of this implementation is efficiency.
# n -> [a(0), a(1), ..., a(n)] for n > 0.
def A000587_list(n):
A = [0 for i in range(n)]
A[n-1] = 1
R = [1]
for j in range(0, n):
A[n-1-j] = -A[n-1]
for k in range(n-j, n):
A[k] += A[k-1]
R.append(A[n-1])
return R
# Peter Luschny, Apr 18 2011
(Python)
# Python 3.2 or higher required
from itertools import accumulate
A000587, blist, b = [1, -1], [1], -1
for _ in range(30):
blist = list(accumulate([b]+blist))
b = -blist[-1]
A000587.append(b) # Chai Wah Wu, Sep 19 2014
(Haskell)
a000587 n = a000587_list !! n
a000587_list = 1 : f a007318_tabl [1] where
f (bs:bss) xs = y : f bss (y : xs) where y = - sum (zipWith (*) xs bs)
-- Reinhard Zumkeller, Mar 04 2014
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
STATUS
approved