The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000586 Number of partitions of n into distinct primes. (Formerly M0022 N0004 N0039) 79
 1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 4, 4, 4, 5, 5, 5, 6, 5, 6, 7, 6, 9, 7, 9, 9, 9, 11, 11, 11, 13, 12, 14, 15, 15, 17, 16, 18, 19, 20, 21, 23, 22, 25, 26, 27, 30, 29, 32, 32, 35, 37, 39, 40, 42, 44, 45, 50, 50, 53, 55, 57, 61, 64, 67, 70, 71, 76, 78, 83, 87, 89, 93, 96 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 REFERENCES H. Gupta, Certain averages connected with partitions. Res. Bull. Panjab Univ. no. 124 1957 427-430. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0004 and N0039). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe) Edray Herber Goins and Talitha M. Washington, On the generalized climbing stairs problem, Ars Combin.  117  (2014), 183-190.  MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009. H. Gupta, Partitions into distinct primes, Proc. Nat. Acad. Sci. India, 21 (1955), 185-187. [broken link] BongJu Kim, Partition number identities which are true for all set of parts, arXiv:1803.08095 [math.CO], 2018. Vaclav Kotesovec, Plot of log(a(n)) / log(Qas(n)) for n = 2..10^8, for Qas see the formula (25) from the article by Murthy, Brack and Bhaduri, p. 7. M. V. N. Murthy, M. Brack, R. K. Bhaduri, On the asymptotic distinct prime partitions of integers, arXiv:1904.02776 [math.NT], Mar 22 2019. K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. J. Math., Oxford Ser. (2) 5 (1954), 241-259. FORMULA G.f.: Product_{k>=1} (1+x^prime(k)). a(n) = A184171(n) + A184172(n). - R. J. Mathar, Jan 10 2011 a(n) = Sum_{k=0..A024936(n)} A219180(n,k). - Alois P. Heinz, Nov 13 2012 log(a(n)) ~ Pi*sqrt(2*n/(3*log(n))) [Roth and Szekeres, 1954]. - Vaclav Kotesovec, Sep 13 2018 EXAMPLE n=16 has a(16) = 3 partitions into distinct prime parts: 16 = 2+3+11 = 3+13 = 5+11. MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       b(n, i-1)+`if`(ithprime(i)>n, 0, b(n-ithprime(i), i-1))))     end: a:= n-> b(n, numtheory[pi](n)): seq(a(n), n=0..100);  # Alois P. Heinz, Nov 15 2012 MATHEMATICA CoefficientList[Series[Product[(1+x^Prime[k]), {k, 24}], {x, 0, Prime}], x] b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i-1] + If[Prime[i] > n, 0, b[n - Prime[i], i-1]]]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *) nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[] = 1; poly[] = 0; poly[] = 1; Do[p = Prime[k]; Do[poly[[j]] += poly[[j - p]], {j, nmax + 1, p + 1, -1}]; , {k, 2, pmax}]; poly (* Vaclav Kotesovec, Sep 20 2018 *) PROG (Haskell) a000586 = p a000040_list where    p _  0 = 1    p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m -- Reinhard Zumkeller, Aug 05 2012 (PARI) a(n, k=n)=if(n<1, !n, my(s); forprime(p=2, k, s+=a(n-p, p-1)); s) \\ Charles R Greathouse IV, Nov 20 2012 (Python) from sympy import isprime, primerange from functools import cache @cache def a(n, k=None):     if k == None: k = n     if n < 1: return int(n == 0)     return sum(a(n-p, p-1) for p in primerange(1, k+1)) print([a(n) for n in range(83)]) # Michael S. Branicky, Sep 03 2021 after Charles R Greathouse IV CROSSREFS Cf. A000041, A070215, A000607 (parts may repeat), A112022, A000009, A046675, A319264, A319267. Sequence in context: A191225 A223893 A112022 * A029399 A302172 A249338 Adjacent sequences:  A000583 A000584 A000585 * A000587 A000588 A000589 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS Entry revised by N. J. A. Sloane, Jun 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 09:26 EDT 2022. Contains 354066 sequences. (Running on oeis4.)