The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184171 Number of partitions of n into an even number of distinct primes. 10
 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 4, 4, 5, 5, 4, 6, 5, 5, 6, 7, 7, 8, 7, 9, 8, 9, 8, 11, 11, 12, 10, 13, 12, 14, 14, 15, 16, 17, 16, 20, 19, 20, 20, 24, 22, 26, 23, 27, 27, 30, 28, 34, 33, 36, 34, 40, 37, 43, 41, 46, 46, 50, 47, 56, 55 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,17 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Alois P. Heinz) FORMULA G.f.: (1/2)*[Product_{k>=1} (1+z^prime(k)) + Product_{k>=1} (1-z^prime(k))]. a(n) = Sum_{k>=0} A219180(n,2*k). - Alois P. Heinz, Nov 15 2012 EXAMPLE a(33) = 5 because we have [31,2], [23,5,3,2], [19,7,5,2], [17,11,3,2], and [13,11,7,2]. MAPLE g := 1/2*(Product(1+z^ithprime(k), k = 1 .. 120)+Product(1-z^ithprime(k), k = 1 .. 120)): gser := series(g, z = 0, 110): seq(coeff(gser, z, n), n = 0 .. 85); # second Maple program with(numtheory): b:= proc(n, i) option remember;       `if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1),        [0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i-1))[]], 0)))     end: a:= proc(n) local l; l:= b(n, pi(n));       add(l[2*i-1], i=1..iquo(nops(l)+1, 2))     end: seq(a(n), n=0..100);  # Alois P. Heinz, Nov 15 2012 MATHEMATICA b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, {}, b[n-Prime[i], i-1]]]}]]]; a[n_] := Module[{l}, l = b[n, PrimePi[n]]; Sum[l[[2*i-1]], {i, 1, Quotient[Length[l]+1, 2]}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *) PROG (PARI) parts(n, pred, y)={prod(k=1, n, 1 + if(pred(k), y*x^k + O(x*x^n), 0))} {my(n=80); Vec(parts(n, isprime, 1) + parts(n, isprime, -1))/2} \\ Andrew Howroyd, Dec 28 2017 CROSSREFS Cf. A000586, A184172, A184198. Sequence in context: A050252 A025877 A219182 * A133989 A029398 A025817 Adjacent sequences:  A184168 A184169 A184170 * A184172 A184173 A184174 KEYWORD nonn AUTHOR Emeric Deutsch, (suggested by R. J. Mathar), Jan 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 06:04 EDT 2021. Contains 345355 sequences. (Running on oeis4.)