login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129062
T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
11
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1
OFFSET
0,5
COMMENTS
Matrix product of Stirling2 with unsigned Stirling1 triangle.
For the subtriangle without column nr. m=0 and row nr. n=0 see A079641.
The reversed matrix product |S1|. S2 is given in A111596.
As a product of lower triangular Jabotinsky matrices this is a lower triangular Jabotinsky matrix. See the D. E. Knuth references given in A039692 for Jabotinsky type matrices.
E.g.f. for row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) is 1/(2-exp(z))^x. See the e.g.f. for the columns given below.
A048993*A132393 as infinite lower triangular matrices. - Philippe Deléham, Nov 01 2009
Triangle T(n,k), read by rows, given by (0,2,1,4,2,6,3,8,4,10,5,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011.
Also the Bell transform of A000629. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
Olivier Bodini, Antoine Genitrini, Cécile Mailler, Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
FORMULA
a(n,m) = sum(S2(n,k)*|S1(k,m)|, k=m..n), n>=0; S2=A048993, S1=A048994.
E.g.f. column nr. m (with leading zeros): (f(x)^m)/m! with f(x):= -log(1-(exp(x)-1)) = -log(2-exp(x)).
Sum_{0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A000670(n), A005649(n) for x = -1,0,1,2 respectively. - Philippe Deléham, Nov 19 2011
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 6, 6, 1;
0, 26, 36, 12, 1;
0, 150, 250, 120, 20, 1;
0, 1082, 2040, 1230, 300, 30, 1;
MAPLE
# The function BellMatrix is defined in A264428.
BellMatrix(n -> polylog(-n, 1/2), 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
rows = 9;
t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)
PROG
(Sage)
def a_row(n):
s = sum(stirling_number2(n, k)*rising_factorial(x, k) for k in (0..n))
return expand(s).list()
[a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Wolfdieter Lang, May 04 2007
EXTENSIONS
New name by Peter Luschny, Jun 27 2019
STATUS
approved