login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039692
Jabotinsky-triangle related to A039647.
37
1, 3, 1, 8, 9, 1, 42, 59, 18, 1, 264, 450, 215, 30, 1, 2160, 4114, 2475, 565, 45, 1, 20880, 43512, 30814, 9345, 1225, 63, 1, 236880, 528492, 420756, 154609, 27720, 2338, 84, 1, 3064320, 7235568, 6316316, 2673972, 594489, 69552, 4074, 108, 1
OFFSET
1,2
COMMENTS
Triangle gives the nonvanishing entries of the Jabotinsky matrix for F(z)= A(z)/z = 1/(1-z-z^2) where A(z) is the g.f. of the Fibonacci numbers A000045. (Notation of F(z) as in Knuth's paper.)
E(n,x) := Sum_{m=1..n} a(n,m)*x^m, E(0,x)=1, are exponential convolution polynomials: E(n,x+y) = Sum_{k=0..n} binomial(n,k)*E(k,x)*E(n-k,y) (cf. Knuth's paper with E(n,x)= n!*F(n,x)).
E.g.f. for E(n,x): (1 - z - z^2)^(-x).
Explicit a(n,m) formula: see Knuth's paper for f(n,m) formula with f(k)= A039647(n).
E.g.f. for the m-th column sequence: ((-log(1 - z - z^2))^m)/m!.
Also the Bell transform of n!*(F(n)+F(n+2)), F(n) the Fibonacci numbers. For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
LINKS
Vincenzo Librandi, Rows n = 1..50, flattened
D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78.
Peter Luschny, The Bell transform
FORMULA
a(n, 1)= A039647(n)=(n-1)!*L(n), L(n) := A000032(n) (Lucas); a(n, m) = Sum_{j=1..n-m+1} binomial(n-1, j-1)*A039647(j)*a(n-j, m-1), n >= m >= 2.
Conjectured row sums: sum_{m=1..n} a(n,m) = A005442(n). - R. J. Mathar, Jun 01 2009
T(n,m) = n! * Sum_{k=m..n} stirling1(k,m)*binomial(k,n-k)*(-1)^(k+m)/k!. - Vladimir Kruchinin, Mar 26 2013
EXAMPLE
1;
3, 1;
8, 9, 1;
42, 59, 18, 1;
264, 450, 215, 30, 1;
MAPLE
A000032 := proc(n) option remember; coeftayl( (2-x)/(1-x-x^2), x=0, n) ; end: A039647 := proc(n) (n-1)!*A000032(n) ; end: A039692 := proc(n, m) option remember ; if m = 1 then A039647(n) ; else add( binomial(n-1, j-1)*A039647(j)*procname(n-j, m-1), j=1..n-m+1) ; fi; end: # R. J. Mathar, Jun 01 2009
MATHEMATICA
t[n_, m_] := n!*Sum[StirlingS1[k, m]*Binomial[k, n-k]*(-1)^(k+m)/k!, {k, m, n}]; Table[t[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Vladimir Kruchinin *)
PROG
(Maxima) T(n, m) := n!*sum((stirling1(k, m)*binomial(k, n-k))*(-1)^(k+m)/k!, k, m, n); \\ Vladimir Kruchinin, Mar 26 2013
(PARI)
T(n, m) = n!*sum(k=m, n, (stirling(k, m, 1)*binomial(k, n-k))*(-1)^(k+m)/k!);
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print());
/* Joerg Arndt, Mar 27 2013 */
(Sage) # uses[bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 to the left side of the triangle.
bell_matrix(lambda n: factorial(n)*(fibonacci(n)+fibonacci(n+2)), 8) # Peter Luschny, Jan 16 2016
CROSSREFS
Cf. A039647, A000032, A000045. Another version of this triangle is in A194938.
Sequence in context: A308666 A076238 A008298 * A071815 A178301 A120236
KEYWORD
nonn,tabl
STATUS
approved