OFFSET
1,2
COMMENTS
Triangle gives the nonvanishing entries of the Jabotinsky matrix for F(z)= A(z)/z = 1/(1-z-z^2) where A(z) is the g.f. of the Fibonacci numbers A000045. (Notation of F(z) as in Knuth's paper.)
E(n,x) := Sum_{m=1..n} a(n,m)*x^m, E(0,x)=1, are exponential convolution polynomials: E(n,x+y) = Sum_{k=0..n} binomial(n,k)*E(k,x)*E(n-k,y) (cf. Knuth's paper with E(n,x)= n!*F(n,x)).
E.g.f. for E(n,x): (1 - z - z^2)^(-x).
Explicit a(n,m) formula: see Knuth's paper for f(n,m) formula with f(k)= A039647(n).
E.g.f. for the m-th column sequence: ((-log(1 - z - z^2))^m)/m!.
Also the Bell transform of n!*(F(n)+F(n+2)), F(n) the Fibonacci numbers. For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
LINKS
Vincenzo Librandi, Rows n = 1..50, flattened
D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78.
Peter Luschny, The Bell transform
FORMULA
a(n, 1)= A039647(n)=(n-1)!*L(n), L(n) := A000032(n) (Lucas); a(n, m) = Sum_{j=1..n-m+1} binomial(n-1, j-1)*A039647(j)*a(n-j, m-1), n >= m >= 2.
Conjectured row sums: sum_{m=1..n} a(n,m) = A005442(n). - R. J. Mathar, Jun 01 2009
T(n,m) = n! * Sum_{k=m..n} stirling1(k,m)*binomial(k,n-k)*(-1)^(k+m)/k!. - Vladimir Kruchinin, Mar 26 2013
EXAMPLE
1;
3, 1;
8, 9, 1;
42, 59, 18, 1;
264, 450, 215, 30, 1;
MAPLE
MATHEMATICA
t[n_, m_] := n!*Sum[StirlingS1[k, m]*Binomial[k, n-k]*(-1)^(k+m)/k!, {k, m, n}]; Table[t[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Vladimir Kruchinin *)
PROG
(Maxima) T(n, m) := n!*sum((stirling1(k, m)*binomial(k, n-k))*(-1)^(k+m)/k!, k, m, n); \\ Vladimir Kruchinin, Mar 26 2013
(PARI)
T(n, m) = n!*sum(k=m, n, (stirling(k, m, 1)*binomial(k, n-k))*(-1)^(k+m)/k!);
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print());
/* Joerg Arndt, Mar 27 2013 */
(Sage) # uses[bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 to the left side of the triangle.
bell_matrix(lambda n: factorial(n)*(fibonacci(n)+fibonacci(n+2)), 8) # Peter Luschny, Jan 16 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved