The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264428 Triangle read by rows, Bell transform of Bell numbers. 180
 1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 11, 6, 1, 0, 15, 45, 35, 10, 1, 0, 52, 205, 210, 85, 15, 1, 0, 203, 1029, 1330, 700, 175, 21, 1, 0, 877, 5635, 8946, 5845, 1890, 322, 28, 1, 0, 4140, 33387, 63917, 50358, 20055, 4410, 546, 36, 1, 0, 21147, 212535, 484140, 450905, 214515, 57855, 9240, 870, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Consider the sequence S0 -> T0 -> S1 -> T1 -> S2 -> T2 -> ... Here Sn -> Tn indicates the Bell transform mapping a sequence Sn to a triangle Tn as defined in the link and Tn -> S{n+1} the operator associating a triangle with the sequence of its row sums. If S0 = A000012 = <1,1,1,...> then T0 = A048993 # Stirling subset numbers, S1 = A000110 # Bell numbers, T1 = A264428 # Bell transform of Bell numbers, S2 = A187761 # second-order Bell numbers, T2 = A264430 # Bell transform of second-order Bell numbers, S3 = A264432 # third-order Bell numbers. This construction is closely related to permutations trees and A179455. Sn is A179455_col(n+1) prepended by A179455_diag(k) = k! for k <= n. In other words, Sn 'converges' to n! for n -> inf. Given a sequence (s(n))n>=0 with s(0) = 0 and with e.g.f. B(x) = Sum_{n >= 1} s(n)*x^n/n!, then the Bell matrix associated with s(n) equals the exponential Riordan array [1, B(x)] belonging to the Lagrange subgroup of the exponential Riordan group. Omitting the first row and column from the Bell matrix produces the exponential Riordan array [d/dx(B(x)), B(x)] belonging to the Derivative subgroup of the exponential Riordan group. - Peter Bala, Jun 07 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1325 Peter Luschny, The Bell transform Peter Luschny, Permutation Trees FORMULA From Peter Bala, Jun 07 2016: (Start) E.g.f.: exp(t*B(x)), where B(x) = Integral_{u = 0..x} exp(exp(u) - 1) du =  x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 15*x^5/5! + 52*x^6/6! + .... Row polynomial recurrence: R(n+1,t) = t*Sum_{k = 0 ..n} binomial(n,k)*Bell(k)* R(n-k,t) with R(0,t) = 1. (End) EXAMPLE Triangle starts:  [0,   1] [0,   1,    1] [0,   2,    3,    1] [0,   5,   11,    6,    1] [0,  15,   45,   35,   10,    1] [0,  52,  205,  210,   85,   15,   1] [0, 203, 1029, 1330,  700,  175,  21,  1] [0, 877, 5635, 8946, 5845, 1890, 322, 28, 1] MAPLE # Computes sequence in matrix form. BellMatrix := proc(f, len) local T, A; A := [seq(f(n), n=0..len-2)]; T := proc(n, k) option remember; if k=0 then k^n else add(binomial(n-1, j-1)*T(n-j, k-1)*A[j], j=1..n-k+1) fi end; Matrix(len, (n, k)->T(n-1, k-1), shape=triangular[lower]) end: BellMatrix(n -> combinat:-bell(n), 9); # Peter Luschny, Jan 21 2016 R := proc(n) option remember; if n = 0 then 1 else t*add(binomial(n-1, k)*combinat:-bell(k)*R(n-k-1, t), k=0..n-1) fi end: T_row := n-> seq(coeff(R(n), t, k), k=0..n): seq(print(T_row(n)), n=0..8); # Peter Luschny, Jun 09 2016, after Peter Bala MATHEMATICA BellMatrix[f_Function|f_Symbol, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 11; M = BellMatrix[BellB, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 21 2016, updated Jul 14 2018 *) With[{r = 8}, Flatten[Table[BellY[n, k, BellB[Range[0, r]]], {n, 0, r}, {k, 0, n}]]] (* Jan Mangaldan, May 22 2016 *) PROG (Sage) # The functions below are referenced in various other sequences. def bell_transform(n, a): # partition_based     row = []     fn = factorial(n)     for k in (0..n):         result = 0         for p in Partitions(n, length=k):             factorial_product = 1             power_factorial_product = 1             for part, count in p.to_exp_dict().items():                 factorial_product *= factorial(count)                 power_factorial_product *= factorial(part)**count             coefficient = fn//(factorial_product*power_factorial_product)             result += coefficient*prod([a[i-1] for i in p])         row.append(result)     return row def bell_matrix(generator, dim):     G = [generator(k) for k in srange(dim)]     row = lambda n: bell_transform(n, G)     return matrix(ZZ, [row(n)+*(dim-n-1) for n in srange(dim)]) def inverse_bell_matrix(generator, dim):     G = [generator(k) for k in srange(dim)]     row = lambda n: bell_transform(n, G)     M = matrix(ZZ, [row(n)+*(dim-n-1) for n in srange(dim)]).inverse()     return matrix(ZZ, dim, lambda n, k: (-1)^(n-k)*M[n, k]) bell_numbers = [sum(bell_transform(n, *10)) for n in range(11)] for n in range(11): print(bell_transform(n, bell_numbers)) (PARI) bell_matrix(f, len) = { my( m = matrix(len, len) );  m[1, 1] = 1;   for( n = 1, len-1, m[n+1, 2] = f(n-1) );   for( n = 0, len-1, for( k = 1, n,      m[n+1, k+1] = sum(j = 1, n-k+1, binomial(n-1, j-1)*m[n-j+1, k]*m[j+1, 2]) ));   return( m ) } f(n) = polcoeff( sum( k=0, n, prod( i=1, k, x / (1 - i*x)), x^n * O(x)), n); bell_matrix(f, 9) \\ Peter Luschny, Jan 24 2016 CROSSREFS Cf. A000012, A000110, A000217, A000914, A027801, A048993, A051836, A179455, A187761 (row sums), A264430, A264432, A265312. Sequence in context: A173050 A172380 A144633 * A256550 A005210 A264430 Adjacent sequences:  A264425 A264426 A264427 * A264429 A264430 A264431 KEYWORD nonn,tabl AUTHOR Peter Luschny, Nov 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 11:51 EDT 2020. Contains 334762 sequences. (Running on oeis4.)