login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256550
Triangle read by rows, T(n,k) = EL(n,k)/(n-k+1)! and EL(n,k) the matrix-exponential of the unsigned Lah numbers scaled by exp(-1), for n>=0 and 0<=k<=n.
1
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 12, 6, 1, 0, 15, 50, 40, 10, 1, 0, 52, 225, 250, 100, 15, 1, 0, 203, 1092, 1575, 875, 210, 21, 1, 0, 877, 5684, 10192, 7350, 2450, 392, 28, 1, 0, 4140, 31572, 68208, 61152, 26460, 5880, 672, 36, 1
OFFSET
0,8
FORMULA
T(n+1,1) = Bell(n) = A000110(n).
T(n+2,2) = C(n+2,2)*Bell(n) = A105479(n+2).
T(n+1,n) = A000217(n).
T(n+2,n) = A008911(n+1).
EXAMPLE
Triangle starts:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 5, 12, 6, 1;
0, 15, 50, 40, 10, 1;
0, 52, 225, 250, 100, 15, 1;
0, 203, 1092, 1575, 875, 210, 21, 1;
PROG
(Sage)
def T(dim) :
M = matrix(ZZ, dim)
for n in range(dim) :
M[n, n] = 1
for k in range(n) :
M[n, k] = (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
E = M.exp()/exp(1)
for n in range(dim) :
for k in range(n) :
M[n, k] = E[n, k]/factorial(n-k+1)
return M
T(8) # Computes the sequence as a lower triangular matrix.
CROSSREFS
Cf. A000110, A000217, A008911, A105479, A256551 (matrix inverse).
Sequence in context: A144633 A352366 A264428 * A005210 A352363 A264430
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Apr 01 2015
STATUS
approved