login
A256550
Triangle read by rows, T(n,k) = EL(n,k)/(n-k+1)! and EL(n,k) the matrix-exponential of the unsigned Lah numbers scaled by exp(-1), for n>=0 and 0<=k<=n.
1
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 12, 6, 1, 0, 15, 50, 40, 10, 1, 0, 52, 225, 250, 100, 15, 1, 0, 203, 1092, 1575, 875, 210, 21, 1, 0, 877, 5684, 10192, 7350, 2450, 392, 28, 1, 0, 4140, 31572, 68208, 61152, 26460, 5880, 672, 36, 1
OFFSET
0,8
FORMULA
T(n+1,1) = Bell(n) = A000110(n).
T(n+2,2) = C(n+2,2)*Bell(n) = A105479(n+2).
T(n+1,n) = A000217(n).
T(n+2,n) = A008911(n+1).
EXAMPLE
Triangle starts:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 5, 12, 6, 1;
0, 15, 50, 40, 10, 1;
0, 52, 225, 250, 100, 15, 1;
0, 203, 1092, 1575, 875, 210, 21, 1;
PROG
(Sage)
def T(dim) :
M = matrix(ZZ, dim)
for n in range(dim) :
M[n, n] = 1
for k in range(n) :
M[n, k] = (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
E = M.exp()/exp(1)
for n in range(dim) :
for k in range(n) :
M[n, k] = E[n, k]/factorial(n-k+1)
return M
T(8) # Computes the sequence as a lower triangular matrix.
CROSSREFS
Cf. A000110, A000217, A008911, A105479, A256551 (matrix inverse).
Sequence in context: A144633 A352366 A264428 * A005210 A352363 A264430
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Apr 01 2015
STATUS
approved