Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Apr 19 2015 08:49:49
%S 1,0,1,0,1,1,0,2,3,1,0,5,12,6,1,0,15,50,40,10,1,0,52,225,250,100,15,1,
%T 0,203,1092,1575,875,210,21,1,0,877,5684,10192,7350,2450,392,28,1,0,
%U 4140,31572,68208,61152,26460,5880,672,36,1
%N Triangle read by rows, T(n,k) = EL(n,k)/(n-k+1)! and EL(n,k) the matrix-exponential of the unsigned Lah numbers scaled by exp(-1), for n>=0 and 0<=k<=n.
%F T(n+1,1) = Bell(n) = A000110(n).
%F T(n+2,2) = C(n+2,2)*Bell(n) = A105479(n+2).
%F T(n+1,n) = A000217(n).
%F T(n+2,n) = A008911(n+1).
%e Triangle starts:
%e 1;
%e 0, 1;
%e 0, 1, 1;
%e 0, 2, 3, 1;
%e 0, 5, 12, 6, 1;
%e 0, 15, 50, 40, 10, 1;
%e 0, 52, 225, 250, 100, 15, 1;
%e 0, 203, 1092, 1575, 875, 210, 21, 1;
%o (Sage)
%o def T(dim) :
%o M = matrix(ZZ, dim)
%o for n in range(dim) :
%o M[n, n] = 1
%o for k in range(n) :
%o M[n,k] = (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
%o E = M.exp()/exp(1)
%o for n in range(dim) :
%o for k in range(n) :
%o M[n,k] = E[n,k]/factorial(n-k+1)
%o return M
%o T(8) # Computes the sequence as a lower triangular matrix.
%Y Cf. A000110, A000217, A008911, A105479, A256551 (matrix inverse).
%K nonn,tabl,easy
%O 0,8
%A _Peter Luschny_, Apr 01 2015