login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256549
Triangle read by rows, T(n,k) = {n,k}*h(k), where {n,k} are the Stirling set numbers and h(k) = hypergeom([-k+1,-k],[],1), for n>=0 and 0<=k<=n.
2
1, 0, 1, 0, 1, 3, 0, 1, 9, 13, 0, 1, 21, 78, 73, 0, 1, 45, 325, 730, 501, 0, 1, 93, 1170, 4745, 7515, 4051, 0, 1, 189, 3913, 25550, 70140, 85071, 37633, 0, 1, 381, 12558, 124173, 526050, 1077566, 1053724, 394353, 0, 1, 765, 39325, 567210, 3482451, 10718946, 17386446, 14196708, 4596553
OFFSET
0,6
FORMULA
Row sums are A075729.
Alternating row sums are the signed Bell numbers (-1)^n*A000110(n).
T(n,k) = A048993(n,k)*A000262(k).
T(n,n) = A000262(n).
T(n+2,2) = A068156(n).
EXAMPLE
Triangle starts:
[1]
[0, 1]
[0, 1, 3]
[0, 1, 9, 13]
[0, 1, 21, 78, 73]
[0, 1, 45, 325, 730, 501]
[0, 1, 93, 1170, 4745, 7515, 4051]
PROG
(Sage)
A000262 = lambda n: simplify(hypergeometric([-n+1, -n], [], 1))
A256549 = lambda n, k: A000262(k)*stirling_number2(n, k)
for n in range(7): [A256549(n, k) for k in (0..n)]
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Apr 12 2015
STATUS
approved