login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256552
Expansion of the unique weight 11/2 Gamma1(4) cusp form in powers of q.
1
1, -2, -8, 16, 20, -36, 0, -32, -75, 220, 104, -128, -44, -392, 0, 256, 232, 474, -536, 320, 168, -1124, 0, -576, 245, 852, 1248, 0, -1668, 2040, 0, -512, -1368, -2632, -560, -1200, 4756, 1428, 0, 3520, 656, -3528, -3224, 1664, -4740, 2168, 0, -2048, 1449
OFFSET
1,2
LINKS
FORMULA
Expansion of q * f(-q)^2 * f(-q^2)^7 * f(-q^4)^2 in powers of q where f() is a Ramanujan theta function.
Expansion of eta(q)^2 * eta(q^2)^7 * eta(q^4)^2 in powers of q.
Euler transform of period 4 sequence [ -2, -9, -2, -11, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(11/2) (t/i)^(11/2) f(t) where q = exp(2 Pi i t).
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k))^7 * (1 - x^(4*k))^2.
a(8*n + 7) = 0. a(4*n) = 16 * a(n).
EXAMPLE
G.f. = q - 2*q^2 - 8*q^3 + 16*q^4 + 20*q^5 - 36*q^6 - 32*q^8 - 75*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^2 QPochhammer[ q^2]^7 QPochhammer[ q^4]^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A)^7 * eta(x^4 + A)^2, n))};
(Magma) Basis( CuspForms( Gamma1(4), 11/2), 50)[1];
CROSSREFS
Sequence in context: A193219 A213249 A155853 * A031061 A175819 A125259
KEYWORD
sign
AUTHOR
Michael Somos, Apr 01 2015
STATUS
approved